Contents in Brief

	Preface	vi
1	The Foundations of Biochemistry	1
1	STRUCTURE AND CATALYSIS	45
2	Water	47
3	Amino Acids, Peptides, and Proteins	75
4	The Three-Dimensional Structure of Proteins	115
5	Protein Function	157
6	Enzymes	189
7	Carbohydrates and Glycobiology	243
8	Nucleotides and Nucleic Acids	281
9	DNA-Based Information Technologies	313
10	Lipids	357
11	Biological Membranes and Transport	385
12	Biosignaling	433
	BIOENERGETICS AND METABOLISM	501
13	Bioenergetics and Biochemical Reaction Types	505
14	Glycolysis, Gluconeogenesis, and the Pentose	
	Phosphate Pathway	543
	Principles of Metabolic Regulation	587
16	The Citric Acid Cycle	633
17	Fatty Acid Catabolism	667
18	Amino Acid Oxidation and the Production of Urea	695
19	Oxidative Phosphorylation and	77.
	Photophosphorylation	731
20		799
21	Lipid Biosynthesis	833
22	Biosynthesis of Amino Acids, Nucleotides, and Related Molecules	881
23	Hormonal Regulation and Integration of	001
LJ	Mammalian Metabolism	929
Ш	INFORMATION PATHWAYS	977
24	Genes and Chromosomes	979
	DNA Metabolism	1009
26	RNA Metabolism	1057
27		1103
28	Regulation of Gene Expression	1155
	Abbreviated Solutions to Problems	AS-1
	Glossary	G-1
	Credits	C-1
	Index	I-1

Contents

1	The Foundations of Biochemistry	1
1.1	Cellular Foundations	2
	Cells Are the Structural and Functional Units	
	of All Living Organisms	3
	Cellular Dimensions Are Limited by Diffusion	3
	There Are Three Distinct Domains of Life	3
	Organisms Differ Widely in Their Sources of Energy	
	and Biosynthetic Precursors	4
	Bacterial and Archaeal Cells Share Common	
	Features but Differ in Important Ways	4
	Eukaryotic Cells Have a Variety of Membranous	
	Organelles, Which Can Be Isolated for Study	6
	The Cytoplasm Is Organized by the Cytoskeleton	0
	and Is Highly Dynamic	8
	Cells Build Supramolecular Structures	9
	In Vitro Studies May Overlook Important	0
	Interactions among Molecules	9
1 2	Chemical Foundations	11
1.2	Biomolecules Are Compounds of Carbon with a	* *
	Variety of Functional Groups	12
	Cells Contain a Universal Set of	14
	Small Molecules	14
	BOX 1–1 Molecular Weight, Molecular Mass, and	
	Their Correct Units	14
	Macromolecules Are the Major Constituents of Cells	15
	Three-Dimensional Structure Is Described by	10
	Configuration and Conformation	16
	BOX 1–2 Louis Pasteur and Optical Activity:	
	In Vino, Veritas	18
	Interactions between Biomolecules	
	Are Stereospecific	19
1.3	Physical Foundations	20
	Living Organisms Exist in a Dynamic Steady State,	
	Never at Equilibrium with Their Surroundings	21
	Organisms Transform Energy and Matter from Their	
	Surroundings	21
	BOX 1-3 Entropy: Things Fall Apart	22
	The Flow of Electrons Provides Energy for	
	Organisms	22
	Creating and Maintaining Order Requires Work	00
	and Energy Energy Counting Links Positions in Rielegy	22 24
	Energy Coupling Links Reactions in Biology K_{eq} and ΔG° Are Measures of a Reaction's Tendency	24
	to Proceed Spontaneously	25
	Enzymes Promote Sequences of Chemical Reactions	27
	Metabolism Is Regulated to Achieve Balance and	
	Economy	28
	·	
1.4	Genetic Foundations	29
	Genetic Continuity Is Vested in Single DNA	
	Molecules	30
	The Structure of DNA Allows for Its Replication and	
	Repair with Near-Perfect Fidelity	30
	The Linear Sequence in DNA Encodes Proteins with	
	Three-Dimensional Structures	30

1.5	Evolutionary Foundations	32	2.4	Water as a Reactant	69
	Changes in the Hereditary Instructions Allow Evolution Biomolecules First Arose by Chemical Evolution	32 33	2.5	The Fitness of the Aqueous Environment for Living Organisms	69
	RNA or Related Precursors May Have Been the				
	First Genes and Catalysts Biological Evolution Began More Than Three	34	3	Amino Acids, Peptides, and Proteins	75
	and a Half Billion Years Ago The First Cell Probably Used Inorganic Fuels	35 35	3.1	Amino Acids	76
	Eukaryotic Cells Evolved from Simpler Precursors			Amino Acids Share Common Structural Features	76
	in Several Stages Molecular Anatomy Reveals Evolutionary	36		The Amino Acid Residues in Proteins Are L Stereoisomers	78
	Relationships	37		Amino Acids Can Be Classified by R Group	78
	Functional Genomics Shows the Allocations of Genes to Specific Cellular Processes	38		BOX 3-1 METHODS: Absorption of Light by Molecules: The Lambert-Beer Law	80
	Genomic Comparisons Have Increasing Importance			Uncommon Amino Acids Also Have Important	
	in Human Biology and Medicine	39		Functions Amino Acids Can Act as Acids and Bases	81 81
Ī	STRUCTURE AND CATALYSIS	45		Amino Acids Have Characteristic Titration Curves Titration Curves Predict the Electric Charge of	82
2	Water	<u> 47</u>		Amino Acids Amino Acids Differ in Their Acid-Base Properties	84 84
2.1	Weak Interactions in Aqueous Systems	47	3 2	Peptides and Proteins	85
-	Hydrogen Bonding Gives Water Its Unusual		3.2	Peptides Are Chains of Amino Acids	85
	Properties Water Forms Hydrogen Bonds with Polar Solutes	47 49		Peptides Can Be Distinguished by Their Ionization Behavior	86
	Water Interacts Electrostatically with Charged			Biologically Active Peptides and Polypeptides Occu	r
	Solutes Entropy Increases as Crystalline Substances	50		in a Vast Range of Sizes and Compositions Some Proteins Contain Chemical Groups Other Tha	.n .n
	Dissolve Nonpolar Gases Are Poorly Soluble in Water	51 51		Amino Acids	89
	Nonpolar Compounds Force Energetically	91	3.3	Working with Proteins	89
	Unfavorable Changes in the Structure of Water van der Waals Interactions Are Weak Interatomic	51		Proteins Can Be Separated and Purified Proteins Can Be Separated and Characterized by	89
	Attractions	53		Electrophoresis	92
	Weak Interactions Are Crucial to Macromolecular Structure and Function	54		Unseparated Proteins Can Be Quantified	95
	Solutes Affect the Colligative Properties of Aqueous		3.4	The Structure of Proteins: Primary Structure The Function of a Protein Depends on Its Amino	96
2.2	Solutions	55 50		Acid Sequence	97
۷.۷	Ionization of Water, Weak Acids, and Weak Bases Pure Water Is Slightly Ionized	58 58		The Amino Acid Sequences of Millions of Proteins Have Been Determined	97
	The Ionization of Water Is Expressed by an			Protein Chemistry Is Enriched by Methods Derived	
	Equilibrium Constant The pH Scale Designates the H ⁺ and OH ⁻	59		from Classical Polypeptide Sequencing Mass Spectrometry Offers an Alternative Method to	98
	Concentrations Weak Acids and Bases Have Characteristic Acid	60		Determine Amino Acid Sequences	100
	Dissociation Constants	61		Small Peptides and Proteins Can Be Chemically Synthesized	102
	Titration Curves Reveal the pK_a of Weak Acids	62		Amino Acid Sequences Provide Important Biochemical Information	104
2.3	Buffering against pH Changes in Biological Systems	63		Protein Sequences Can Elucidate the History	
	Buffers Are Mixtures of Weak Acids and	63		of Life on Earth BOX 3-2 Consensus Sequences and Sequence Logos	104 105
	Their Conjugate Bases	64		and bequence logos	103
	The Henderson-Hasselbalch Equation Relates pH, p $K_{\rm a}$, and Buffer Concentration	64	4	The Three-Dimensional Structure	
	Weak Acids or Bases Buffer Cells and Tissues against pH Changes	65		of Proteins	115
	Untreated Diabetes Produces Life-Threatening	งอ	4.1	Overview of Protein Structure	115
	Acidosis BOX 2-1 MEDICINE: On Being One's Own Rabbit	67		A Protein's Conformation Is Stabilized Largely by	
	(Don't Try This at Home!)	68		Weak Interactions The Peptide Bond Is Rigid and Planar	$\frac{116}{117}$

				Contents	xvii
4.2	Protein Secondary Structure The α Helix Is a Common Protein Secondary	119		Hemoglobin Binds Oxygen Cooperatively Cooperative Ligand Binding Can Be Described	165
	Structure Amino Acid Sequence Affects Stability of the α Helix	120 121		Quantitatively Two Models Suggest Mechanisms for	167
	BOX 4–1 METHODS: Knowing the Right Hand from the Left The $oldsymbol{eta}$ Conformation Organizes Polypeptide			Cooperative Binding BOX 5-1 MEDICINE: Carbon Monoxide: A Stealthy Killer Hemoglobin Also Transports H ⁺ and CO ₂	167 168 169
	Chains into Sheets β Turns Are Common in Proteins	123 123		Oxygen Binding to Hemoglobin Is Regulated by 2,3-Bisphosphoglycerate	171
	Common Secondary Structures Have Characteristic Dihedral Angles	123		Sickle-Cell Anemia Is a Molecular Disease of Hemoglobin	172
	Common Secondary Structures Can Be Assessed by Circular Dichroism	124	5.2	Complementary Interactions between Proteins	
4.3	Protein Tertiary and Quaternary Structures Fibrous Proteins Are Adapted for a Structural	125		and Ligands: The Immune System and Immunoglobulins	174
	Function BOX 4–2 Permanent Waving Is Biochemical Engineering	125 127		The Immune Response Features a Specialized Array of Cells and Proteins	174
	BOX 4-3 MEDICINE: Why Sailors, Explorers, and College Students Should Eat Their Fresh Fruits and Vegetables	128		Antibodies Have Two Identical Antigen-Binding Sites	175
	Structural Diversity Reflects Functional Diversity in Globular Proteins	130		Antibodies Bind Tightly and Specifically to Antigen	177
	Myoglobin Provided Early Clues about the Complexity of Globular Protein Structure	131		The Antibody-Antigen Interaction Is the Basis for a Variety of Important Analytical Procedures	178
	BOX 4-4 The Protein Data Bank Globular Proteins Have a Variety of Tertiary	132	5.3	Protein Interactions Modulated by Chemical	470
	Structures BOX 4-5 METHODS: Methods for Determining the Three-	133		Energy: Actin, Myosin, and Molecular Motors The Major Proteins of Muscle Are Myosin and	179
	Dimensional Structure of a Protein Protein Motifs Are the Basis for Protein Structural	134		Actin Additional Proteins Organize the Thin and Thick	179
	Classification Protein Quaternary Structures Range from Simple	138		Filaments into Ordered Structures Myosin Thick Filaments Slide along Actin Thin Filaments	181 182
	Dimers to Large Complexes Some Proteins or Protein Segments Are	140	6	_	189
	Intrinsically Disordered	141		Enzymes	
4.4	Protein Denaturation and Folding	143	6.1	An Introduction to Enzymes	1 89 190
	Loss of Protein Structure Results in Loss of Function	143		Most Enzymes Are Proteins Enzymes Are Classified by the Reactions They Catalyze	190
	Amino Acid Sequence Determines Tertiary	144		•	
	Structure Polypeptides Fold Rapidly by a Stepwise Process	144 144	6.2	How Enzymes Work Enzymes Affect Reaction Rates, Not Equilibria	192 192
	Some Proteins Undergo Assisted Folding Defects in Protein Folding Provide the Molecular	146		Reaction Rates and Equilibria Have Precise Thermodynamic Definitions	192
	Basis for a Wide Range of Human Genetic Disorders	148		A Few Principles Explain the Catalytic Power and Specificity of Enzymes	194
	BOX 4–6 MEDICINE: Death by Misfolding: The Prion Diseases			Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State	195
5	Protein Function	157		Binding Energy Contributes to Reaction Specificity and Catalysis	197
5.1	Reversible Binding of a Protein to a Ligand:	450		Specific Catalytic Groups Contribute to Catalysis	199
	Oxygen-Binding Proteins	158	6.3	Enzyme Kinetics as an Approach to	
	Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins	158 159		Understanding Mechanism	200
	Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described	159		Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions	200
	Quantitatively Protein Structure Affects How Ligands Bind	159 162		The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed	
	Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar to	163		Quantitatively Kinetic Parameters Are Used to Compare Enzyme	202
	Myoglobin	163		Activities BOX 6-1 Transformations of the Michaelis-Menten	203
	Hemoglobin Undergoes a Structural Change on Binding Oxygen	163		Equation: The Double-Reciprocal Plot	204

]	Many Enzymes Catalyze Reactions with Two or More Substrates Pre-Steady State Kinetics Can Provide Evidence for Specific Reaction Steps Enzymes Are Subject to Reversible or Irreversible Inhibition BOX 6-2 Kinetic Tests for Determining Inhibition	206207207		Steric Factors and Hydrogen Bonding Influence Homopolysaccharide Folding Bacterial and Algal Cell Walls Contain Structural Heteropolysaccharides Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix	257 259 260
	Mechanisms BOX 6-3 MEDICINE: Curing African Sleeping Sickness with a Biochemical Trojan Horse Enzyme Activity Depends on pH	209 211 212	7.3	Glycoconjugates: Proteoglycans, Glycoproteins, and Glycosphingolipids Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix	263
	Examples of Enzymatic Reactions The Chymotrypsin Mechanism Involves Acylation and Deacylation of a Ser Residue	214214		Glycoproteins Have Covalently Attached Oligosaccharides Glycolipids and Lipopolysaccharides Are	266
	An Understanding of Protease Mechanisms Leads to New Treatments for HIV Infections Hexokinase Undergoes Induced Fit on Substrate Binding	218 219	7.4	Membrane Components Carbohydrates as Informational Molecules: The Sugar Code	268 269
	The Enolase Reaction Mechanism Requires Metal Ions Lysozyme Uses Two Successive Nucleophilic Displacement Reactions An Understanding of Enzyme Mechanism	220 220		Lectins Are Proteins That Read the Sugar Code and Mediate Many Biological Processes Lectin-Carbohydrate Interactions Are Highly Specific and Often Multivalent	269 272
	Produces Useful Antibiotics Regulatory Enzymes	224 226	7.5 8	Working with Carbohydrates Nucleotides and Nucleic Acids	274 281
	Allosteric Enzymes Undergo Conformational Changes in Response to Modulator Binding	226			
	The Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior	227	8.1	Some Basics Nucleotides and Nucleic Acids Have Characteristic Bases and Pentoses	281281
	Some Enzymes Are Regulated by Reversible Covalent Modification Phosphoryl Groups Affect the Structure and Catalytic Activity of Enzymes	228 229		Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids	284 286
	Multiple Phosphorylations Allow Exquisite Regulatory Control Some Enzymes and Other Proteins Are Regulated	230	8.2	Nucleic Acid Structure	287
	by Proteolytic Cleavage of an Enzyme Precursor A Cascade of Proteolytically Activated Zymogens Leads to Blood Coagulation Some Regulatory Enzymes Use Several Regulatory Mechanisms	231232235		DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains	288 290 291 293
7	Carbohydrates and Glycobiology	243		Many RNAs Have More Complex Three-Dimensional Structures	294
7.1	Monosaccharides and Disaccharides	243	8.3	Nucleic Acid Chemistry	297
	The Two Families of Monosaccharides Are Aldoses and Ketoses Monosaccharides Have Asymmetric Centers	244		Double-Helical DNA and RNA Can Be Denatured Nucleic Acids from Different Species Can Form	297
	The Common Monosaccharides Have Cyclic Structures	244 245		Hybrids Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations	298 299
	Organisms Contain a Variety of Hexose Derivatives BOX 7-1 MEDICINE: Blood Glucose Measurements in the Diagnosis and Treatment of Diabetes	249 250		Some Bases of DNA Are Methylated The Sequences of Long DNA Strands Can Be Determined	302 302
	Monosaccharides Are Reducing Agents Disaccharides Contain a Glycosidic Bond BOX 7-2 Sugar Is Sweet, and So Area Few Other Things	251 252		The Chemical Synthesis of DNA Has Been Automated	304
7 7	•		8.4	Other Functions of Nucleotides	306
1.2	Polysaccharides Some Homopolysaccharides Are Stored Forms of Fuel	254 255		Nucleotides Carry Chemical Energy in Cells Adenine Nucleotides Are Components of	306
	Some Homopolysaccharides Serve Structural Roles	255 256		Many Enzyme Cofactors Some Nucleotides Are Regulatory Molecules	306 308

9	DNA-Based Information Technologies	313		Some Glycerophospholipids Have Ether-Linked Fatty Acids	364
9.1	Studying Genes and Their Products	314		Chloroplasts Contain Galactolipids and Sulfolipids	
	Genes Can Be Isolated by DNA Cloning	314		Archaea Contain Unique Membrane Lipids	365
	Restriction Endonucleases and DNA Ligases Yield			Sphingolipids Are Derivatives of Sphingosine	366
	Recombinant DNA	314		Sphingolipids at Cell Surfaces Are Sites of Biologic Recognition	eal 367
	Cloning Vectors Allow Amplification of Inserted DNA Segments	317		Phospholipids and Sphingolipids Are Degraded in	307
	Cloned Genes Can Be Expressed to Amplify Protein			Lysosomes	368
	Production	321		Sterols Have Four Fused Carbon Rings	368
	Many Different Systems Are Used to Express			BOX 10-1 MEDICINE: Abnormal Accumulations of	
	Recombinant Proteins	322		Membrane Lipids: Some Inherited Human Diseases	369
	Alteration of Cloned Genes Produces Altered Proteins	323	10.3	Lipids as Signals, Cofactors, and Pigments	370
	Terminal Tags Provide Handles for Affinity	343		Phosphatidylinositols and Sphingosine Derivatives	
	Purification	325		Act as Intracellular Signals	370
	Gene Sequences Can Be Amplified with the			Eicosanoids Carry Messages to Nearby Cells	371
	Polymerase Chain Reaction	327		Steroid Hormones Carry Messages between Tissues	372
	BOX 9-1 METHODS: A Powerful Tool in Forensic Medicine	329		Vascular Plants Produce Thousands of Volatile	314
9.2	Using DNA-Based Methods to Understand			Signals	372
	Protein Function	331		Vitamins A and D Are Hormone Precursors	373
	DNA Libraries Are Specialized Catalogs of Genetic			Vitamins E and K and the Lipid Quinones Are	074
	Information	332		Oxidation-Reduction Cofactors Dolichols Activate Sugar Precursors for	374
	Sequence or Structural Relationships Provide	200		Biosynthesis	375
	Information on Protein Function Fusion Proteins and Immunofluorescence Can	333		Many Natural Pigments Are Lipidic Conjugated	
	Localize Proteins in Cells	333		Dienes	376
	Protein-Protein Interactions Can Help Elucidate	000		Polyketides Are Natural Products with Potent	050
	Protein Function	334		Biological Activities	376
	DNA Microarrays Reveal RNA Expression Patterns	205	10.4	Working with Lipids	377
	and Other Information	337		Lipid Extraction Requires Organic Solvents	377
9.3	Genomics and the Human Story	339		Adsorption Chromatography Separates Lipids of	070
	Genomic Sequencing Is Aided by New Generations			Different Polarity Gas-Liquid Chromatography Resolves Mixtures of	378
	of DNA-Sequencing Methods	339		Volatile Lipid Derivatives	378
	BOX 9-2 MEDICINE: Personalized Genomic Medicine	340		Specific Hydrolysis Aids in Determination of Lipid	
	The Human Genome Contains Genes and Many Other Types of Sequences	342		Structure	378
	Genome Sequencing Informs Us about Our			Mass Spectrometry Reveals Complete Lipid Structure	378
	Humanity	345		Lipidomics Seeks to Catalog All Lipids and Their	910
	Genome Comparisons Help Locate Genes	0.47		Functions	379
	Involved in Disease Genome Sequences Inform Us about Our Past and	347			
	Provide Opportunities for the Future	349			
	BOX 9-3 Getting to Know the Neanderthals	350	11	Biological Membranes and Transport	385
			11.1	The Composition and Architecture of Membranes	386
10	Lipids	357		Each Type of Membrane Has Characteristic	500
				Lipids and Proteins	386
10.1	Storage Lipids	357		All Biological Membranes Share Some Fundamenta	
	Fatty Acids Are Hydrocarbon Derivatives	357		Properties A Lipid Bilever Is the Pecia Structural Florant of	387
	Triacylglycerols Are Fatty Acid Esters of Glycerol	360		A Lipid Bilayer Is the Basic Structural Element of Membranes	387
	Triacylglycerols Provide Stored Energy and Insulation	360		Three Types of Membrane Proteins Differ in Their	501
	Partial Hydrogenation of Cooking Oils Produces			Association with the Membrane	389
	Trans Fatty Acids	361		Many Membrane Proteins Span the Lipid Bilayer	390
	Waxes Serve as Energy Stores and Water	969		Integral Proteins Are Held in the Membrane by Hydrophobic Interactions with Lipids	200
	Repellents	362		Hydrophobic Interactions with Lipids The Topology of an Integral Membrane Protein	390
10.2	Structural Lipids in Membranes	362		Can Sometimes Be Predicted from Its Sequence	391
	Glycerophospholipids Are Derivatives of	262		Covalently Attached Lipids Anchor Some	
	Phosphatidic Acid	363		Membrane Proteins	394

11.2	Membrane Dynamics	395		BOX 12-2 MEDICINE: G Proteins: Binary Switches in Healt	
	Acyl Groups in the Bilayer Interior Are Ordered to			and Disease	441
	Varying Degrees	395		Several Mechanisms Cause Termination of the β -Adrenergic Response	444
	Transbilayer Movement of Lipids Requires	396		The β -Adrenergic Receptor Is Desensitized by	
	Catalysis Lipids and Proteins Diffuse Laterally in	550		Phosphorylation and by Association with	
	the Bilayer	397		Arrestin	445
	Sphingolipids and Cholesterol Cluster Together in			Cyclic AMP Acts as a Second Messenger for Many	110
	Membrane Rafts	398		Regulatory Molecules Diacylglycerol, Inositol Trisphosphate, and Ca ²⁺	446
	Membrane Curvature and Fusion Are Central to	399		Have Related Roles as Second Messengers	447
	Many Biological Processes Integral Proteins of the Plasma Membrane	อฮฮ		BOX 12-3 METHODS: FRET: Biochemistry Visualized in a	
	Are Involved in Surface Adhesion, Signaling,			Living Cell	448
	and Other Cellular Processes	402		Calcium Is a Second Messenger That May Be	
11 2	Solute Transport across Membranes	402		Localized in Space and Time	451
11.5	Passive Transport Is Facilitated by Membrane	702		GPCRs Mediate the Actions of a Wide Variety of	452
	Proteins	403		Signals	404
	Transporters and Ion Channels Are		12.3	Receptor Tyrosine Kinases	453
	Fundamentally Different	404		Stimulation of the Insulin Receptor Initiates a	
	The Glucose Transporter of Erythrocytes	405		Cascade of Protein Phosphorylation Reactions	453
	Mediates Passive Transport The Chloride-Bicarbonate Exchanger Catalyzes	405		The Membrane Phospholipid PIP ₃ Functions at a	450
	Electroneutral Cotransport of Anions across			Branch in Insulin Signaling The JAK-STAT Signaling System Also Involves	456
	the Plasma Membrane	407		Tyrosine Kinase Activity	457
	BOX 11-1 MEDICINE: Defective Glucose and Water			Cross Talk among Signaling Systems Is Common	
	Transport in Two Forms of Diabetes	408		and Complex	458
	Active Transport Results in Solute Movement		12.4	Receptor Guanylyl Cyclases, cGMP, and	
	against a Concentration or Electrochemical Gradient	409	12.4	Protein Kinase G	459
	P-Type ATPases Undergo Phosphorylation during	400		Protein kinase u	433
	Their Catalytic Cycles	410	12.5	Multivalent Adaptor Proteins and Membrane	
	V-Type and F-Type ATPases Are Reversible,			Rafts	460
	ATP-Driven Proton Pumps	412		Protein Modules Bind Phosphorylated Tyr, Ser, or	
	ABC Transporters Use ATP to Drive the Active Transport of a Wide Variety of Substrates	413		Thr Residues in Partner Proteins	460
	Ion Gradients Provide the Energy for Secondary	410		Membrane Rafts and Caveolae May Segregate	
	Active Transport	414		Signaling Proteins	463
	BOX 11-2 MEDICINE: A Defective Ion Channel in		12.6	Gated Ion Channels	464
	Cystic Fibrosis	415		Ion Channels Underlie Electrical Signaling in	
	Aquaporins Form Hydrophilic Transmembrane	410		Excitable Cells	464
	Channels for the Passage of Water Ion-Selective Channels Allow Rapid Movement	418		Voltage-Gated Ion Channels Produce Neuronal	
	of Ions across Membranes	420		Action Potentials	465
	Ion-Channel Function Is Measured Electrically	421		The Acetylcholine Receptor Is a Ligand-Gated Ion Channel	467
	The Structure of a K ⁺ Channel Reveals the Basis			Neurons Have Receptor Channels That Respond to	
	for Its Specificity Gated Ion Channels Are Central in Neuronal	422		Different Neurotransmitters	468
	Function	424		Toxins Target Ion Channels	468
	Defective Ion Channels Can Have Severe	1-1	12.7	Integrins: Bidirectional Cell Adhesion	
	Physiological Consequences	424		Receptors	470
				Receptors	,,,
12	Biosignaling	433	12.8	Regulation of Transcription by Nuclear	
12.1	General Features of Signal Transduction	433		Hormone Receptors	471
	BOX 12-1 METHODS: Scatchard Analysis Quantifies	JJJ	120	Cianalina in Microaraniams and Monte	47-
	the Receptor-Ligand Interaction	435	12.9	Signaling in Microorganisms and Plants Bacterial Signaling Entails Phosphorylation in a	473
	•	.55		Two-Component System	473
12.	2 G Protein-Coupled Receptors and Second	40-		Signaling Systems of Plants Have Some of the Same	
	Messengers	777			473
	The β -Adrenergic Receptor System Acts through	437		Components Used by Microbes and Mammals Plants Detect Ethylene through a Two-Component	

Reaction Types 13.1 Bioenergetics and Thermodynamics Biological Energy Transformations Obey the Laws of Thermodynamics Cells Require Sources of Free Energy Standard Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and NADH The Overall Balance Sheet Shows a Net Gain of ATP Glycolysis Is under Tight Regulation 555 Slycolysis Is under Tight Regulation 555 Slycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus 558 Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis Standard Free-Energy Change for ATP Hydrolysis Standard Free-Energy Change for ATP Hydrolysis Is Large and NADH The Overall Balance Sheet Shows a Net Gain of ATP Solgyolysis Is under Tight Regulation Stages Is under Tight Regulation Suggests Targets for Chemotherapy and Facilitates Diagnosis Suggests Targets for Chemotherapy and Facilitates Mellitus 556 14.2 Feeder Pathways for Glycolysis Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis t					Contents	xxi
12.10 Sensory Transduction in Vision, Olfaction, and Gustation 477 The Visual System Uses Classic GPCR Mechanisms Excited Rhodopsin Acts through the 6 Protein Transducin to Recluce the GBIP Concentration 477 The Visual Signal is Quicidy Terminated 480 Cone Cells Specialize in Color Vision 480 80x12-4 MEDICINE Color Planifoness: John Dation's Experiment from the Grave 481 Werterbrate Olificition and Gustation Use Mechanisms Similar to the Visual System 481 GPCRs of the Sensory Systems Share Several Features with GPCRs of Homone Signaling Systems 482 Love's of Cycle Las Four Stages 484 Love's of Cycle Las Four Stages 485 Collistance Cell Division by Phosphorylating Critical Proteins Grave Presentant Approach in Certain Genes Remove Normal Restriation of Cell Ceyle Lage Protein Kinases Inhibitors for Gancer Features 184 Apoptosis is Programmed Cell Suicide 492 Defects in Certain Genes Remove Normal Restriation of Cell Ceyle Lage Protein Kinases Inhibitors for Gancer Features 184 Apoptosis is Programmed Cell Suicide 492 Disclosed Intermodynamics 506 Biological Division by Phosphorylating Critical Proteins for Gancer Features 184 Apoptosis is Programmed Cell Suicide 492 Disclosed Intermodynamics 506 Biological Division 500 Proteins for Gancer Features 184 Biological Division 500 Proteins for Gancer Features 184 Biological Division 500 Proteins for Gancer Features 184 Apoptosis is Programmed Cell Suicide 492 Disclosed Intermodynamics 506 Cell Requires Sources of Pree Renegy 510 Protein Kinases Inhibitors of Call Revision 500 Proteins 600 Protein			476			522
and Gustation The Visual System Uses Classic GPCR Mechanisms Excited Rhodopsin Acts through the G Protein Transition to Reduce the GMP Concentration Transition to Reduce the GMP Concercitation The Visual Signal Is Quickly Terminated 480 Cone Colls Specialize in Color Vision 80X12-4 MRD(IRK: Gold Bildness: John Dalton's Experiment from the Grave Vertebrate Olfaction and Gustation Cse Mechanisms Similar to the Visual System 481 GPCRs of Hormone Signaling Systems 482 Mechanisms Similar to the Visual System 483 GPCRs of Hormone Signaling Systems 484 Levels of Cyclin-Pipendent Protein Kinases Oscillate Click Gyde Has Four States Cyclin-Pipendent Protein Kinases Oscillate Click Proteins That Regulate Cell Division by Phosphorytating Critical Proteins Restraints on Cell Division Restraints on Cell Division Biological Energy Transport and Muscle Approach is Programmed Cell Sucide 188 BIOEKS of Color Systems 189 BIOEKERGETICS AND METABOLISM 501 Biolenergetics and Biochemical Reaction Types 199 BIOEKERGETICS AND METABOLISM 501 Biolenergetics and Intermodynamics Sinclagical Angel And Art Monosaccharides Approach is Pree-Energy Changes bepend on Reactant and Product Concentrations Sinclagical Angel Approach Serve as Linky Signalized Coll Division Actual Pree-Energy Changes beginned on Reactant and Product Concentrations Biochemical and Chemical Reactions Biochemical and Common Biochemical Reactions Colls Requilibrium Constant And Product Concentrations Sinclagical Angel Pree Energy Changes Departed on Reactant and Product Concentrations Sinclagical Angel Pree Energy Changes beginned on Reactant and Product Concentrations Sinclagical Angel Pree Energy Changes Departed on Reactant and Product Concentrations Sinclagical Energy Changes beginned on Reactant and Product Concentrations Sinclagical Angel Pree Energy Changes Departed on Reactant and Product Concentrations Sinclagical Angel Pree Energy Changes Departed on Reactant and Product Concentrations Sinclagical Angel Pree Energy Changes Departed on Reactant and Product Con	12.10	-	470		Adenylyl Groups	523
The Visual System Uses Classic GPCR Mechanisms Active Modopsin Acts through the G Protein Transdated to Network the GMP Concentration Transdation to Reduce the GMP Concentration The Visual Signal Is Quickly Terminated 480 Cone Coils Specialize in Color Vision BOX 12-4 MEDICINE Coils Gillindiness: John Daton's Experiment from the Grave Wortschrate Olfaction and Ginstation Use Mechanisms Similar to the Visual System 481 GPCRs of the Sensory Systems Share Several Pentures with GPCRs of Unromos Signaling Systems 482 Levels of Cyclin-Dependent Protein Kinases Oscillate Colvel Tas Pows Tstages 484 Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Ordillate Colvel Tas Pows Tstages Levels of Cyclin-Dependent Protein Kinases Inhibitors of Carc			477			524
Excited Rhodopsin Acts through the G Protein Transshouth to Reduce the cGMP Concentration The Visual Signal Is Quickly Terminated 480 Cone Cells Specialize in Color Vision 480 BOX 12-4 MEDICINE: Clor Brindness: John Dalton's Experiment from the Grave Wetherate Olfaction and Ginstation Use Mechanisms Similar to the Visual System 481 GPCRs of the Sensory Systems Share Several Peatures with GPCRs of Hormone Signaling Systems 482 The Cell Cycle has Four Stages Oscillate CDKs Repulsate Cell Division by Phosphorylating Critical Proteins Critical Proteins Critical Proteins 12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death 488 Oncogenes Are Mutant Forms of the Genes for Proteins Tran Regulate the Cell Cycle 489 Defects in Certain Genes Remove Normal Restraints on Cell Division BOX 12-5 MEDICINE: Development of Protein Kinases Inhibitors for Cancer Featment Actual Proce Barcey Change is Directly Related to the Equilibrum Constant Actual Proce Energy Change is Directly Related to the Equilibrum Constant Actual Proce-Energy Change is Directly Related to the Equilibrum Constant Actual Pree-Energy Change is Directly Related to the Equilibrum Constant Actual Pree-Energy Change is Directly Related to the Equilibrum Constant Actual Pree-Energy Change is Directly Related to the Equilibrum Constant Actual Pree-Energy Change is Directly Related to the Equilibrum Constant Actual Pree-Energy Changes Depend on Reactant and Protuct Concentrations Suggests Targets for Chemotherapy and Facilitates Disposis Is Large and Negative Other Phosphorolysia on Other Monosaccharides Change and Negative Other Phosphorolysis is Large and Negative Other Phosphorolysis is Large and Negative Other Phosphorolysis of ATP Rydrolysis Is Large and Negative Other Phosphorolysis And David Concentrations As a Development of Protein Kinase Inhibitors of Cancer feetment Actual Pree-Energy Changes For ATP Rydrolysis Sis Large and Negative Other Phosphorolysis of ATP Rydrolysis Sis Large and Negative Other Phosphorolysis of ATP Rydrolysis An Ove		The Visual System Uses Classic GPCR				
Transducin to Reduce the eGMP Concentration 478 The Visual Signal Is Quickly Terminated 480 Concer Colls Specializer to Iclor Vision 480 BX12-4 MEDICINE: Color Bindness: John Dattor's Experiment from the Grave Vertebrate Olifaction and Giustation Use Mechanisms Similar to the Visual System 481 GCPCRs of Hormone Signaling Systems 482 Lovels of Cyclin-Dependent Protein Kinases Oscillate Clicyle Has Pour Stages 484 Lovels of Cyclin-Dependent Protein Kinases Oscillate 481 COKS Regulate Cell Division by Phosphorylating Critical Proteins Consensity of Cyclin-Dependent Protein Kinases Oscillate 487 COKS Regulate Cell Division by Phosphorylating Critical Proteins and Restraints on Cell Division by Phosphorylating Critical Proteins and Restraints on Cell Division by Phosphorylating Critical Proteins and Restraints on Cell Division the Genes for Proteins Than Regulate the Cell Cycle 489 Defects in Certain Genes Remove Normal Restrains on Cell Division 489 Apoptosis is Programmed Cell Suicide 492 III BIOENERGETICS AND METABOLISM 501 13 Bioenergetics and Biochemical Reaction Types 505 Colls Require Sources of Pree Energy Changes of Are Middle Contential Management of the Contential Management of the Contential			477			.
Concentration The Visual Signal Is Quickly Terminated 450 Cone Cells Specialize in Color Vision 480 BOX12-4 MEDICINE: Clor Bindness: John Dalton's Experiment from the Grave 481 Vertebrate Olfaction and Ginstation Use Mechanisms Sturillar to the Visual System 481 GPCRs of the Sensory Systems share Several Pestures with GPCRs of Hormone Signaling Systems 482 Lavels of Cyclin-Dependent Protein Kinases Oscillate Cell Dycision by Phosphorylating Critical Proteins Critical Proteins Critical Proteins Critical Proteins 12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death 488 Oncogenes Are Mutant Forms of the Genes for Proteins That Regulates the Cell Cycle 489 Defects in Certain Genes Remove Normal Restraints on Cell Division by Apoptosis is Programmed Cell Saticide 492 III BIOENEEGETICS AND METABOLISM 501 Biological Energy Transformutions Obey the Laws of Thermodynamics 506 Biological Division 692 Standard Prec-Energy Change Special Cell Staticide 492 III Bioenergetics and Biochemical Reaction Types 13.1 Bioenergetics and Fhermodynamics 506 Biological Division 692 Standard Tree-Energy Change Special Cell Staticide 492 III Bioenergetics and Forms of the Genes of Protein Kinase inhibitors or Cancer Teatment Actual Pree-Energy Change Is Directly Related to the Englisherium Constant Actual Pree-Energy Change Is Directly Related to the Englisherium Constant Actual Pree-Energy Changes Depend on Reactuar and Product Concentrations 507 Standard Tree-Energy Changes Depend on Reactuar and Product Concentrations 508 Standard Pree-Energy Changes Depend on Reactuar and Product Concentrations 509 Standard Pree-Energy Changes Depend on Reactuar and Product Concentrations 509 Standard Pree-Energy Changes For ATP Hydrolysis 507 Standard Pree-Energy Change For ATP Hydrolysis 507 Standard Pree-Energy Change For ATP Hydrolysis 518 Standard Pree-Energy Change For ATP		-				525
BXX12-4 MEDICINE: Long Billindess: John Dalton's Experiment from the Grave Vertebrace Olfaction and Gustation Cse Mechanisms Similar to the Visual System GPCRs of the Sensory Systems Stare Several Peatures with GPCRs of Hormone Signaling Systems 482 12.11 Regulation of the Cell Cycle by Protein Kinases Oscillate Curks of Cyclin-Dependent Protein Kinases Oscillate Curks of Expediate Cell Division by Phosphorylating Critical Proteins 12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death Oncogenes Are Mutant Portus of the Genes for Proteins That Regulate the Cell Cycle Proteins That Regulate the Cell Cycle Apoptosis is Programmed Cell Suicide Apoptosis is Programmed Cell Suicide 13.3 Bioenergetics and Biochemical Reaction Types 13.1 Bioenergetics and Biochemical Reaction Types 13.2 Bioenergetics and Free Energy Changes Pephen on Reactant and Product Concentrations Cells Require Sources of Prec Energy Changes Pephen on Reactant and Product Concentrations Sugaest Stayes to Leaves of Glycobysis Regulates ATP Actual Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Pephen on Reactant and Product Concentrations Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Pephend on Reactant and Product Concentrations Standard Pree-Energy Changes Pephend on Reactant and Product Concentrations Standard Pree-Energy Changes Pephend on Reactant and Product Concentrations Standard Pree-Energy Changes Pephend on Reactant and Product Concentrations Standard Pree-Energy Change			478			526
Box12-4 MidDICINE: Color Blindness: John Datton's Experiment from the Grave Vernebrate Olifaction and Gustation Use Mechanisms Strillar to the Visual System 481 GPCRs of the Sensory Systems Share Several Features with GPCRs of Hormone Signaling Systems 482 to the Sensory Systems Share Several Features with GPCRs of Hormone Signaling Systems 482 to CRISTAGE Of Hormone Signaling Systems 484 to CRISTAGE Of Systems Share Several Features with GPCRs of Hormone Signaling Systems 484 to CRISTAGE Of Systems Share Several Features with GPCRs of Hormone Signaling Systems 484 to CRISTAGE OF Systems Share Several Features with GPCRs of Hormone Signaling Systems 484 to CRISTAGE OF Systems Share Several Features with GPCRs of Hormone Signaling Systems 484 to CRISTAGE Of Systems Share Several Features with GPCRs of Hormone Signaling Systems 484 to CRISTAGE OF Systems Share Several Features with GPCRs of Hormone Signaling Systems 485 to CRISTAGE OF Systems Share Several Features with GPCRs of Hormone Signaling Systems 485 to CRISTAGE OF Systems Share Several Features 486 to CRISTAGE OF Systems Share Several Features 486 to Cristage Share Systems Share Several Features 486 to Cristage Share Share Special Features 486 to Cristage Share Shar						
Experiment from the Grave 481 1.5.4 80100JCal XXI0ation-Reduction Rediction 526			480		Phosphoryl Group Donor	527
Verrebrate Ottaction and Gustation Use Mechanisms Similar to the Visual Systems 481 GPCRs of the Sensory Systems Share Several Features with GPCRs of Hormone Signaling Systems 482 12.11 Regulation of the Cell Cycle by Protein Kinases The Cell Cycle Has Four Stages 484 Levels of Cyclin-Dependent Protein Kinases Oscillate CDKs Regulate Cell Division by Phosphorylating Critical Proteins Proteins Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division BOX 12-5 MEDICINE: Development of Protein Kinases Inhibitors for Cancer Treatment Reaction Types 13. Bioenergetics and Biochemical Reaction Types Standard Free-Energy Change Sepend on Reactant and Product Concentrations Standard Pree-Energy Changes Are Additive To the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Are Additive Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Pree-Langer Charges are Additive Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Pree-Langer Charges Are Additive Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Pree-Energy Charge Are Additive Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Pree-Energy Charges Are Additive Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Pree-Energy Charge Are Additive Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Pree-Energy Charge Are Additive Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Pree-Energy			481	13.4		
### Allife Reactions 528		Vertebrate Olfaction and Gustation Use			<u> </u>	528
with GPCRs of Hormone Signating Systems 482 12.11 Regulation of the Cell Cycle by Protein Kinases The Cell Cycle has Four Stages 484 Levels of Cyclin-Dependent Protein Kinases Oscillate CDKs Regulate Cell Division by Phosphorylating Critical Proteins CDKs Regulate Cell Division by Phosphorylating Critical Proteins Programmed Cell Death Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division ROAD-CONTROL Stages ROAD-CONTROL STAG		-				528
12.11 Regulation of the Cell Cycle by Protein Kinases The Cell Cycle Has Pour Stages Levels of Cyclin-Dependent Protein Kinases Oscillate CDK's Regulate Cell Division by Phosphorylating Critical Proteins Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division Apoptosis is Programmed Cell Suicide 18 Bioenergetics and Biochemical Reaction Types 19 Bioenergetics and Biochemical Reaction Types 19 Standard Reduction Potentials Measure Affinity for Electrons Standard Reduction Potentials Can Be Used to Calculate Free-Energys of Coenzymes and Proteins Serve as Universal Electron Carriers Apoptosis is Programmed Cell Cycle 489 Defects in Certain Genes Remove Normal Restraints on Cell Division Apoptosis is Programmed Cell Suicide 490 Bioenergetics and Biochemical Reaction Types 10 Bioenergetics and Biochemical Reaction Types 11 Bioenergetics and Biochemical Reaction Types 12 Cellular Oxidation of Glucose to Carbon Dioxide Requires Specialized Electron Carriers Apoptosis of Coenzymes and Proteins Serve as Universal Electron Carriers Apoptosis is Programmed Cell Cycle 489 Dietary Deficiency of Nacin, the Vitamin Form of NAD and NADP. Act with Dehydrogenases as Soluble Electron Carriers Apoptosis is Programmed Cell Suicide 492 14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 14.1 Glycolysis An Overview: Glycolysis Has Two Phases The Preparatory Phase of Glycolysis Requires ATP 480 An Overview: Glycolysis Has Two Phases The Preparatory Phase of Glycolysis Requires ATP 481 An Overview: Glycolysis Has Two Phases The Preparatory Phase of Glycolysis Requires ATP 482 An Overview: Glycolysis Has Two Phases The Preparatory Phase of Glycolysis Requires ATP 483 An Overview: Glycolysis Has Two Phases The Preparatory Phase of Glycolysis Fedian An Overview: Glycolysis Infumors Suggests Targets for Chemotherapy and Facilitates Objective Phosphorylated Compounds		· ·				
The Cell Cycle Has Pour Stages Levels of Cyclin-Dependent Protein Kinases Oscillate CDKs Regulate Cell Division by Phosphorylating Critical Proteins Compared Cell Division by Phosphorylating Critical Proteins Programmed Cell Death Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for Proteins That Rogulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division Apoptosis is Programmed Cell Suicide Diblary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Soluble Electron Carriers Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Soluble Electron Carriers Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NADP: Act with Dehydrogenases as Soluble Electron Carriers Dictary Deficiency of NaDa and NaDP	12.11					
Levels of Cyclin-Dependent Protein Kinases Oscillate OSE Regulate Cell Division by Phosphorylating Critical Proteins 12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division BOX 12-5 MEDICINE: Development of Protein Kinase Inhibitors for Cancer freatment Apoptosis is Programmed Cell Suicide 13 Bioenergetics and Biochemical Reaction Types 14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 15 Glycolysis Has Two Phases The Preparatory Phase of Glycolysis Requires ATP The Payoff Phase of Glycolysis Requires ATP The Product Concentrations Standard Free-Energy Change is Directly Related to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.1 Biochemical and Chemical Equations Are Not Identical 13.2 Chemical Logic and Common Biochemical Reactions Standard Free-Energy Changes Are Additive 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation 15 Fates of Pyruvate under Anaerobic Conditions: Fermentation 15 Fates Trained Ageor Change Celluar Oxidation of Glucoar Trainers A Few Types of Coenzymes and Proteins Serve as A Few Types of Coenzymes and Souble Electron Carriers A Soluble Electron Carriers A Few Types of Goenzymes and Protein Kinase Boulated Wath The Dehydrogenases as Soluble Electron Carriers A Soluble Electron Carriers A Few Types of Goenzymes and Electron Carriers A Soluble Electron Carriers A Few Types of Generator Carriers A Few Types of Ge	12.11	• •			=	5 530
Oscillate CDKs Regulate Cell Division by Phosphorylating Critical Proteins A87 12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death A88 Oncogenes, Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division BOX 12-5 MDICINE: Development of Protein Kinase Inhibitors for Cancer Treatment Apoptosis Is Programmed Cell Suicide 13 Bioenergetics and Biochemical Reaction Types 505 13.1 Bioenergetics and Biochemical Reaction Types 505 Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Are Additive Actual Free-Energy Changes Are Additive Standard Pree-Energy Changes Are Additive Biochemical and Chemical Equations Are Not Identical Reactions Biochemical and Chemical Equations Are Not Identical Reactions Sinchemical and Chemical Equations Are Not Identical Sinchemical and Reactions			404		Calculate Free-Energy Change	531
21.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division Apoptosis Is Programmed Cell Suicide 18 BIOENERGETICS AND METABOLISM 19 BIOENERGETICS AND METABOLISM 10 Bioenergetics and Biochemical Reaction Types 10 Bioenergetics and Thermodynamics Cells Require Sources of Free Energy Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Depend on Reactant and Product Concentrations Standard Pree-Energy Changes Are Additive 10 Cells Require Sources of Free Energies of Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Sandard Preve-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Sandard Preve-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Sandard Preve-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Sandard Preve-Energy Changes Sand Starch Are Degraded by Physphorolysis to Monosaccharides Sandard Preve-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Sandard Preve-Energy Changes Sandard Preversion Carriers Also Have Large Free Energies of Hydrolysis Sandard Preversion Carriers Also Have Large Free Energies of Hydrolysis Sandard Preversion Carriers Soluble Electron Carriers Soluble Electron Carriers Soluble Releation Carriers Soluble Releation Carriers Soluble Releator Of Niacin, the Vitamin Form of NAD In Play Nandard Preversion		Oscillate	484			700
12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death			407			532
Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division BOX 12-5 MEDICINE: Development of Protein Kinase Inhibitors for Cancer Treatment Apoptosis Is Programmed Cell Suicide 14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 543 18 BIOENERGETICS AND METABOLISM 501 18 Bioenergetics and Biochemical Reaction Types 505 Biological Energy Transformations Obey the Laws of Thermodynamics Cells Require Sources of Free Energy Standard Free-Energy Changes Is Directly Related to the Equilibrium Constant and Product Concentrations Standard Free-Energy Changes Are Additive Biochemical and Chemical Equations Are Not Identical Biochemical and Chemical Equations Are Not Identical Reactions Biochemical and Chemical Equations Are Not Identical Biochemical and Chemical Equations Are Not Identical The Pree-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Actual Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Size Chemical Logic and Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Size Chemical Lagic Free Energies of Hydrolysis Also Have Large Free Energies of Hydrolysis Size Chemical Education Actual Preventions Also Have Large Free Energies of Hydrolysis Size Charge Free En			401			532
Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division BOX 12-5 MEDICINE: Development of Protein Kinase Inhibitors for Cancer Treatment Apoptosis Is Programmed Cell Suicide 14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 543 15 BIOENERGETICS AND METABOLISM 16 BIOENERGETICS AND METABOLISM 17 Bioenergetics and Biochemical Reaction Types 18 Bioenergetics and Hermodynamics 19 Bioenergetics and Thermodynamics 19 Biological Energy Transformations Obey the Laws of Thermodynamics 19 Cells Require Sources of Free Energy 19 Standard Free-Energy Changes Depend on Reactant and Product Concentrations 19 Standard Free-Energy Changes Are Additive 19 Chemical Logic and Common Biochemical Reactions 19 Biochemical and Chemical Equations Are Not Identical 19 Posphoryl Group Transfers and ATP 10 The Pree-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 10 Signal and NADH. Causes Pellagra 10 ANDH and NADP. Causes Pellagra 10 AND And NADP. Causes Pellagra 10 ANDH Flavoproteins 10 ANDH The Option Siguaconeogenesis, and the Pentose Phosphate Pathway 10 Siguaconeogenesis, and the Pentose Phosphate Pathway 11 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 12 Siguaconeogenesis, and the Pentose Phosphate Pathway 13 An Overview: Glycolysis Has Two Phases 14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 18 Siguaconeogenesis, and the Pentose Phosphate Pathway 19 An Overview: Glycolysis Has Two Phases 18 An Overview: Glycolysis Has Two Phases 18 An Overview: Glycolysis Has Two Phases 18 An Overview: Glycolysis Is auder Tight Pathway 19 An Overview: Glycolysis Has Two Phases 19 Glycolysis Is auder Tight Regulation 10 Arthe Pentose Phosphorylase of Glycolysis Induction 10 Arthe Pentose Phosphorylase of Glycolysis Induction 10 Arthe Pentose Phosphorylase of Glycolysis Ind	12.12	• • • • • • • • • • • • • • • • • • • •	400			500
Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal Restraints on Cell Division Apoptosis is Programmed Cell Suicide An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two Phase of Glycolysis Requires ATP An Overview: Glycolysis Has Two P		•	488			532
Defects in Certain Genes Remove Normal Restraints on Cell Division			489			535
BOX 12-5 MEDICINE: Development of Protein Kinase Inhibitors for Cancer Treatment Apoptosis Is Programmed Cell Suicide 492 the Pentose Phosphate Pathway 543 II BIOENERGETICS AND METABOLISM 501 Bioenergetics and Biochemical Reaction Types 505 Biological Energy Transformations Obey the Laws of Thermodynamics Cells Require Sources of Free Energy Standard Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical Logic and Common Biochemical Reactions Biochemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 520 14.1 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 543 14.2 Glycolysis Has Two Phases 544 The Preparatory Phase of Glycolysis Requires ATP 548 The Preparatory Phase of Glycolysis Requires ATP 548 The Preparatory Phase of Glycolysis Requires ATP 548 The Preparatory Phase of Glycolysis Requires ATP 556 The Overall Balance Sheet Shows a Net Gain of ATP 6lycolysis Is under Tight Regulation 6 ATP 6lycolysis Is under Tight Regulation 6 ATP 6lycolysis Is under Tight Regulation 6 ATP 6lycolysis Is under Tight Regulation 9 ATP 6lycolysis Pathway 1 ATP 6lycolysis Pathway 1 ATP 6lycolysis 9 ATP 6lycolysis Pathway 1 ATP 6l		Defects in Certain Genes Remove Normal			- · · · · · · · · · · · · · · · · · · ·	FOF
Il BIOENERGETICS AND METABOLISM 501 13 Bioenergetics and Biochemical Reaction Types 505 13.1 Bioenergetics and Thermodynamics Biological Energy Transformations Obey the Laws of Thermodynamics Other Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 520 14.1 Glycolysis Mar Two Phases 544 The Preparatory Phase of Glycolysis Requires A54 The Preparatory Phase of Glycolysis Requires A55 Glycolysis Is under Tight Regulation Factor A1P MEDICINE: High Rate of Glycolysis in Tumors Suggests Targets for Chemotherapy and Facilitates Diagnosis Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus 558 Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides The Preparatory Phase of Glycolysis Prepa			489		riavoproteins	องอ
the Pentose Phosphate Pathway 543 BIOENERGETICS AND METABOLISM 501 14.1 Glycolysis Has Two Phases 544 An Overview: Glycolysis Has Two Phases 544 The Preparatory Phase of Glycolysis Requires ATP 548 The Preparatory Phase of Glycolysis Yields ATP and NADH 550 The Payoff Phase of Glycolysis Yields ATP and NaDH 550 The Payoff Phase of Glycolysis Yields ATP and NaDH 550 The Payoff Phase of Glycolysis Yields ATP and NaDH 550 The Pa		•	490	14	Glycolysis, Gluconeogenesis, and	
An Overview: Glycolysis Has Two Phases 544 The Preparatory Phase of Glycolysis Requires ATP 548 The Payoff Phase of Glycolysis Yields ATP and NADH The Overall Balance Sheet Shows a Net Gain of ATP Glycolysis Is under Tight Regulation 555 Biological Energy Transformations Obey the Laws of Thermodynamics 506 Cells Require Sources of Free Energy 507 Standard Free-Energy Change Is Directly Related to the Equilibrium Constant 507 Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 510 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 517 The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 520 An Overview: Glycolysis Has Two Phases 544 The Preparatory Phase of Glycolysis ATP and NADH The Overall Balance Sheet Shows a Net Gain of ATP Glycolysis Is under Tight Regulation 555 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 144 Feeder Pathways for Glycolysis Is Under Tight Regulation 555 The Preder Pathways for Glycolysis Is Under Tight Regulation 555 The Preder Pathways for Glycolysis Is Under Tight Regulation 555 The Preder Pathways for Glycolysis Is Under Tight Regulation 555 The Preder Pathways for Glycolysis Is Under Tight Regulation 555 The Preder Pathways for Glycolysis Is Under Tight Reder Figure 555 The Preder Pathways for Gly					the Pentose Phosphate Pathway	543
The Preparatory Phase of Glycolysis Requires ATP 548 Reaction Types 505 13.1 Bioenergetics and Thermodynamics 506 Biological Energy Transformations Obey the Laws of Thermodynamics 506 Cells Require Sources of Free Energy 507 Standard Free-Energy Change Is Directly Related to the Equilibrium Constant and Product Concentrations Standard Free-Energy Changes Are Additive 510 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 517 The Free-Energy Change for ATP Hydrolysis Is Large and Negative 6180 13.3 Phosphoryl Group Transfers and ATP 517 The Free-Energy Change for ATP Hydrolysis Also Have Large Free Energies of Hydrolysis 520 The Preparatory Phase of Glycolysis Requires ATP 548 The Payoff Phase of Glycolysis Fleda TP and NADH 550 The Powerall Balance Sheet Shows a Net Gain of ATP and NATH 555 The Overall Balance Sheet Shows a Net Gain of ATP BOX14-1 MEDICINE: High Rate of Glycolysis in Tumors 548 80X14-1 MEDICINE: High Rate of Glycolysis in Tumors 549 Suggests Targets for Chemotherapy and facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and facilitates Diagnosis 540 14.2 Feeder Pathways for Glycolysis 558 Dietary Polysaccharides and Disaccharides 558 Undergo Hydrolysis to Monosaccharides 558 Endogenous Glycogen and Starch Are Degraded by Phosphorolysis 560 Other Monosaccharides Enter the Glycolytic Pathway at Several Points 561 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation 563]]]	BIOFNERGETICS AND METABOLISM	501	14.1	• •	
The Payoff Phase of Glycolysis Yields ATP and NADH The Overall Balance Sheet Shows a Net Gain of ATP and NADH The Overall Balance Sheet Shows a Net Gain of ATP Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is Under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is Under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glycolysis Is Under Tight Regulation 555 Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Mellitus 558 Mellitus 558 Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides 558 Undergo Hydrolysis to Monosaccharides 558 Dietary Polysaccharides and Disaccharides 558 Undergo Hydrolysis to Monosaccharides 558 Other Monosaccharides Enter the Glycolytic Pathway at Several Points 561 Targe and Negative 518 Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 520 Lactic Acid Fermentation 563		TOLKER GETTOS AND INTIADOLISM			ů ů	
Reaction Types 13.1 Bioenergetics and Thermodynamics Biological Energy Transformations Obey the Laws of Thermodynamics Cells Require Sources of Free Energy Standard Free-Energy Change Is Directly Related to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical Chemical Logic and Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Also Have Large Free Energies of Hydrolysis 13.3 Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 506 Souggests Targets for Chemotherapy and Facilitates Diagnosis Suggests Targets for Chemotherapy and Facilitates Mellitus 558 Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides	13	Bioenergetics and Biochemical			- · · · · · · · · · · · · · · · · · · ·	
13.1 Bioenergetics and Thermodynamics Biological Energy Transformations Obey the Laws of Thermodynamics Cells Require Sources of Free Energy Standard Free-Energy Change Is Directly Related to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Souggests Targets for Chemotherapy and Facilitates Diagnosis Suggests Targets for Chemoth			505			550
Biological Energy Transformations Obey the Laws of Thermodynamics Cells Require Sources of Free Energy Standard Free-Energy Change Is Directly Related to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Signal Tight Regulation 556 80X 14-1 MEDICINE: High Rate of Glycolysis In Tumors Suggests Targets for Chemotherapy and Facilitates Diagnosis Suggests Targets for Chemotherapy and Facilitates Diagnosis 544 Suggests Targets for Chemotherapy and Facilitates Diagnosis 545 Suggests Targets for Chemotherapy and Facilitates Diagnosis 544 Suggests Targets for Chemotherapy and Facilitates Diagnosis 545 Suggests Targets for Chemotherapy and Facilitates Diagnosis 545 Suggests Targets for Chemotherapy and Facilitates Diagnosis 545 Suggests Targets for Chemotherapy and Facilitates Diagnosis 546 Suggests Targets for Chemotherapy and Facilitates Diagnosis 545 Suggests Targets for Chemotherapy and Facilitates Diagnosis 546 Suggests Targets for Chemotherapy and Facilitates Diagnosis 548 Suggests Targets for Chemotherapy and Facilitates Diagnosis Sugge	12 1	<u>. </u>	506			555
Laws of Thermodynamics Cells Require Sources of Free Energy Standard Free-Energy Change Is Directly Related to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Cells Require Sources of Free Energy 507 Suggests Targets for Chemotherapy and Facilitates Diagnosis Suggests Targets for Chemotherapy and Facilitates Diagnosis Suggests Targets for Chemotherapy and Facilitates Diagnosis 556 Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus 558 Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides Other Monosaccharides Enter the Glycolytic Pathway at Several Points 560 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation Fermentation Fermentation Fermentation Fermentation Fermentation Fermentation Foat	13.1	•	200		Glycolysis Is under Tight Regulation	
Standard Free-Energy Change Is Directly Related to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 1507 508 Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus 558 Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus 558 14.2 Feeder Pathways for Glycolysis Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis to Mo			506			
to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 1507 Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus 558 14.2 Feeder Pathways for Glycolysis Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Undergo Hydrolysis Undergo Hydrolysis Undergo Hy			507		- 10	t E C
Actual Free-Energy Changes Depend on Reactant and Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Actual Free-Energy Changes Depend on Reactant and Product Concentrations 509 510 14.2 Feeder Pathways for Glycolysis Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Endogenous Glycogen and Starch Are Degraded by Phosphorolysis Other Monosaccharides Enter the Glycolytic Pathway at Several Points 563 Pyruvate under Anaerobic Conditions: Fermentation 558 14.2 Feeder Pathways for Glycolysis Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides 558 Undergo Hydrolysis to Monosaccharides 558 Endogenous Glycogen and Starch Are Degraded by Phosphorolysis Other Monosaccharides Enter the Glycolytic Pathway at Several Points 561 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation 563		= :	507			220
And Product Concentrations Standard Free-Energy Changes Are Additive 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis Standard Free-Energy Changes Are Additive 14.2 Feeder Pathways for Glycolysis Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides Endogenous Glycogen and Starch Are Degraded by Phosphorolysis Other Monosaccharides Enter the Glycolytic Pathway at Several Points 560 Other Monosaccharides Enter the Glycolytic Pathway at Several Points 563 Pyruvate under Anaerobic Conditions: Fermentation 563						558
Dietary Polysaccharides and Disaccharides 13.2 Chemical Logic and Common Biochemical Reactions Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 13.4 Chemical Logic and Common Biochemical Undergo Hydrolysis to Monosaccharides Endogenous Glycogen and Starch Are Degraded by Phosphorolysis Other Monosaccharides Enter the Glycolytic Pathway at Several Points 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation 563 Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation 563				14.2	Feeder Pathways for Glucolusis	558
Reactions Biochemical and Chemical Equations Are Not Identical Biochemical and Chemical Equations Ar			510			
Biochemical and Chemical Equations Are Not Identical 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 150 Dy Phosphorolysis Other Monosaccharides Enter the Glycolytic Pathway at Several Points 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation Fermentation Fermentation Solution 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation Solution S	13.2					558
Identical Identical Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 1517 Other Monosaccharides Enter the Glycolytic Pathway at Several Points 561 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation Fermentation Fyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation 563			511			560
Pathway at Several Points Pathway at Several Points 561 13.3 Phosphoryl Group Transfers and ATP The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 15.0 Pathway at Several Points 561 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation Propried Fermentation 563 Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation 563			517			500
The Free-Energy Change for ATP Hydrolysis Is Large and Negative Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 518 14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation 563 Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation 563	12.2				Pathway at Several Points	561
Is Large and Negative 518 Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 520 Fermentation 563 Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation 563	17.3		211	14.3	Fates of Pyruvate under Anaerobic Conditions:	
Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 520 Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation 563			518		_	563
this time and the second of th		Other Phosphorylated Compounds and Thioesters				_
ATP Provides Energy by Group Transiers, Not by bull 14-2 Athletes, Allidators, and Lociacantins:		Also Have Large Free Energies of Hydrolysis ATP Provides Energy by Group Transfers, Not by	520		Lactic Acid Fermentation BOX 14-2 Athletes, Alligators, and Coelacanths:	563

	BOX 14-2 Athletes, Alligators, and Coelacanths: Glycolysis at Limiting Concentrations of Oxygen Ethanol Is the Reduced Product in Ethanol Fermentation Thiamine Pyrophosphate Carries "Active Acetaldehyde" Groups BOX 14-3 Ethanol Fermentations: Brewing Beer and	564 565 565		The Response Coefficient Expresses the Effect of an Outside Controller on Flux through a Pathway Metabolic Control Analysis Has Been Applied to Carbohydrate Metabolism, with Surprising Results Metabolic Control Analysis Suggests a General Method for Increasing Flux through a Pathway	598 599
	Producing Biofuels	566		- -	000
	Fermentations Are Used to Produce Some Common Foods and Industrial Chemicals	566	15.3	Coordinated Regulation of Glycolysis and Gluconeogenesis	601
14.4	Gluconeogenesis	568		Hexokinase Isozymes of Muscle and Liver Are	001
	Conversion of Pyruvate to Phosphoenolpyruvate Requires Two Exergonic Reactions	570		Affected Differently by Their Product, Glucose 6-Phosphate	602
	Conversion of Fructose 1,6-Bisphosphate to	010		BOX 15–2 Isozymes: Different Proteins That Catalyze	002
	Fructose 6-Phosphate Is the Second Bypass	572		the Same Reaction	602
	Conversion of Glucose 6-Phosphate to Glucose	570		Hexokinase IV (Glucokinase) and Glucose	
	Is the Third Bypass Gluconeogenesis Is Energetically Expensive,	573		6-Phosphatase Are Transcriptionally Regulated	603
	but Essential	573		Phosphofructokinase-1 and Fructose 1,6-Bisphosphatase Are Reciprocally	
	Citric Acid Cycle Intermediates and Some Amino			Regulated	604
	Acids Are Glucogenic	574		Fructose 2,6-Bisphosphate Is a Potent Allosteric	
	Mammals Cannot Convert Fatty Acids to Glucose Glycolysis and Gluconeogenesis Are Reciprocally	574		Regulator of PFK-1 and FBPase-1	605
	Regulated	574		Xylulose 5-Phosphate Is a Key Regulator of Carbohydrate and Fat Metabolism	606
145				The Glycolytic Enzyme Pyruvate Kinase Is	000
14.5	Pentose Phosphate Pathway of Glucose	ror.		Allosterically Inhibited by ATP	606
	Oxidation	575		The Gluconeogenic Conversion of Pyruvate to	
	The Oxidative Phase Produces Pentose Phosphates and NADPH	575		Phosphoenol Pyruvate Is Under Multiple	coc
	BOX 14-4 MEDICINE: Why Pythagoras Wouldn't Eat Falafo			Types of Regulation Transcriptional Regulation of Glycolysis and	608
	Glucose 6-Phosphate Dehydrogenase Deficiency	576		Gluconeogenesis Changes the Number of	
	The Nonoxidative Phase Recycles Pentose			Enzyme Molecules	608
	Phosphates to Glucose 6-Phosphate	577		BOX 15-3 MEDICINE: Genetic Mutations That Lead to	
	Wernicke-Korsakoff Syndrome Is Exacerbated by a			Rare Forms of Diabetes	611
	Defect in Transketolase Glucose 6-Phosphate Is Partitioned between	580	15 <i>4</i>	The Metabolism of Glycogen in Animals	612
	Glycolysis and the Pentose Phosphate Pathway	580	F.C.	Glycogen Breakdown Is Catalyzed by Glycogen	
				Phosphorylase Glucose 1-Phosphate Can Enter Glycolysis or,	613
15	Principles of Metabolic Regulation	587		in Liver, Replenish Blood Glucose	614
15.1	Regulation of Metabolic Pathways	588		The Sugar Nucleotide UDP-Glucose Donates	
	Cells and Organisms Maintain a Dynamic			Glucose for Glycogen Synthesis	615
	Steady State	589		BOX 15-4 Carl and Gerty Cori: Pioneers in Glycogen	C1 (
	Both the Amount and the Catalytic Activity of an			Metabolism and Disease Glycogenin Primes the Initial Sugar Residues in	616
	Enzyme Can Be Regulated	589		Glycogen	619
	Reactions Far from Equilibrium in Cells Are Common Points of Regulation	592			
	Adenine Nucleotides Play Special Roles in	002	15.5	Coordinated Regulation of Glycogen	
	Metabolic Regulation	594		Synthesis and Breakdown	620
15.2	Analysis of Metabolic Control	596		Glycogen Phosphorylase Is Regulated Allosterically	
	The Contribution of Each Enzyme to Flux through			and Hormonally Glycogen Synthase Is Also Regulated by	621
	a Pathway Is Experimentally Measurable	596		Phosphorylation and Dephosphorylation	623
	The Flux Control Coefficient Quantifies the Effect			Glycogen Synthase Kinase 3 Mediates Some of the	-
	of a Change in Enzyme Activity on Metabolite Flux through a Pathway	E077		Actions of Insulin	624
	The Elasticity Coefficient Is Related to an Enzyme's	597		Phosphoprotein Phosphatase 1 Is Central to	00
	Responsiveness to Changes in Metabolite or			Glycogen Metabolism Allosteric and Hormonal Signals Coordinate	624
	Regulator Concentrations	597		Carbohydrate Metabolism Globally	624
	BOX 15-1 METHODS: Metabolic Control Analysis:			Carbohydrate and Lipid Metabolism Are Integrated	
	Quantitative Aspects	598		hy Hormonal and Allosteric Mechanisms	626

16	The Citric Acid Cycle	633		Acetyl-CoA Can Be Further Oxidized in	055
16.1	Production of Acetyl-CoA (Activated Acetate)	633		the Citric Acid Cycle BOX 17-1 Fat Bears Carry Out β Oxidation in Their Sleep	675 67 6
10.1	Pyruvate Is Oxidized to Acetyl-CoA and CO ₂	634		Oxidation of Unsaturated Fatty Acids Requires	010
	The Pyruvate Dehydrogenase Complex Requires	004		Two Additional Reactions	677
	Five Coenzymes	634		Complete Oxidation of Odd-Number Fatty Acids	
	The Pyruvate Dehydrogenase Complex Consists of			Requires Three Extra Reactions Fatty Acid Oxidation Is Tightly Regulated	677 678
	Three Distinct Enzymes In Substrate Channeling, Intermediates Never	635		Transcription Factors Turn on the Synthesis of	010
	Leave the Enzyme Surface	636		Proteins for Lipid Catabolism	679
				BOX 17-2 Coenzyme B ₁₂ : A Radical Solution to a	
16.2	Reactions of the Citric Acid Cycle	638		Perplexing Problem	680
	The Sequence of Reactions in the Citric Acid	490		Genetic Defects in Fatty Acyl–CoA Dehydrogenase	
	Cycle Makes Chemical Sense The Citric Acid Cycle Has Eight Steps	638 640		Cause Serious Disease Peroxisomes Also Carry Out β Oxidation	682 682
	BOX 16–1 Moonlighting Enzymes: Proteins with More	040		Plant Peroxisomes and Glyoxysomes Use	002
	Than One Job	642		Acetyl-CoA from $oldsymbol{eta}$ Oxidation as a Biosynthetic	
	BOX 16-2 Synthases and Synthetases; Ligases and Lyase	5;		Precursor	683
	Kinases, Phosphatases, and Phosphorylases: Yes, the			The β -Oxidation Enzymes of Different Organelles	683
	Names Are Confusing!	646		Have Diverged during Evolution The ω Oxidation of Fatty Acids Occurs in the	000
	The Energy of Oxidations in the Cycle Is Efficientl	-		Endoplasmic Reticulum	684
	Conserved BOX 16–3 Citrate: A Symmetric Molecule That Reacts	647		Phytanic Acid Undergoes $lpha$ Oxidation in	
	Asymmetrically	648		Peroxisomes	685
	Why Is the Oxidation of Acetate So Complicated?	649	17.3	Ketone Bodies	686
	Citric Acid Cycle Components Are Important			Ketone Bodies, Formed in the Liver, Are	
	Biosynthetic Intermediates	650		Exported to Other Organs as Fuel	686
	Anaplerotic Reactions Replenish Citric Acid Cycle Intermediates	650		Ketone Bodies Are Overproduced in Diabetes and during Starvation	688
	Biotin in Pyruvate Carboxylase Carries CO ₂ Groups	651		and during star varion	000
		CED	18	Amino Acid Oxidation and the	
16.3	Regulation of the Citric Acid Cycle	653	10		COL
	Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by			Production of Urea	695
	Allosteric and Covalent Mechanisms	654	18.1	Metabolic Fates of Amino Groups	696
	The Citric Acid Cycle Is Regulated at Its Three			Dietary Protein Is Enzymatically Degraded to	
	Exergonic Steps	655		Amino Acids	697
	Substrate Channeling through Multienzyme Complexes May Occur in the Citric Acid Cycle	655		Pyridoxal Phosphate Participates in the Transfer of α-Amino Groups to α-Ketoglutarate	699
	Some Mutations in Enzymes of the Citric Acid	000		Glutamate Releases Its Amino Group As Ammonia	
	Cycle Lead to Cancer	656		in the Liver	700
1 C A	The Cluevalete Cuele	656		Glutamine Transports Ammonia in the Bloodstream	702
10.4	The Glyoxylate Cycle The Charles Crole Produces Four Corbon	050		Alanine Transports Ammonia from Skeletal Muscles to the Liver	703
	The Glyoxylate Cycle Produces Four-Carbon Compounds from Acetate	657		Ammonia Is Toxic to Animals	703
	The Citric Acid and Glyoxylate Cycles Are		19.7	Nitrogen Excretion and the Urea Cycle	704
	Coordinately Regulated	658	10.2	Urea Is Produced from Ammonia in Five	104
				Enzymatic Steps	704
17	Fatty Acid Catabolism	667		The Citric Acid and Urea Cycles Can Be Linked	706
17.1	Digestion, Mobilization, and Transport of Fats	668		The Activity of the Urea Cycle Is Regulated at	=00
*1.1	Dietary Fats Are Absorbed in the Small Intestine	668		Two Levels Pathway Interconnections Reduce the Energetic	708
	Hormones Trigger Mobilization of Stored			Cost of Urea Synthesis	708
	Triacylglycerols	669		BOX 18-1 MEDICINE: Assays for Tissue Damage	708
	Fatty Acids Are Activated and Transported into	670		Genetic Defects in the Urea Cycle Can Be Life-	
	Mitochondria	670		Threatening	709
17.2	Ovidation of Fatty Asida	672	18.3	Pathways of Amino Acid Degradation	710
	Oxidation of Fatty Acids	012		•	
	The $oldsymbol{eta}$ Oxidation of Saturated Fatty Acids Has Four	•		Some Amino Acids Are Converted to Glucose,	F7
	_			•	711

	Six Amino Acids Are Degraded to Pyruvate Seven Amino Acids Are Degraded to Acetyl-CoA Phenylalanine Catabolism Is Genetically Defective in Some People	715 717 719		Hypoxia Leads to ROS Production and Several Adaptive Responses ATP-Producing Pathways Are Coordinately Regulated	760 761
	Five Amino Acids Are Converted to α-Ketoglutarate Four Amino Acids Are Converted to Succinyl-CoA Branched-Chain Amino Acids Are Not Degraded in the Liver	721 722 723	19.4	Mitochondria in Thermogenesis, Steroid Synthesis, and Apoptosis Uncoupled Mitochondria in Brown Adipose	762
	BOX 18–2 MEDICINE: Scientific Sleuths Solve a	120		Tissue Produce Heat	762
	Murder Mystery	724		Mitochondrial P-450 Oxygenases Catalyze Steroid Hydroxylations	763
	Asparagine and Aspartate Are Degraded to Oxaloacetate	724		Mitochondria Are Central to the Initiation of Apoptosis	764
19	Oxidative Phosphorylation and		19.5	Mitochondrial Genes: Their Origin and	
	Photophosphorylation	731		the Effects of Mutations	765
OXID	ATIVE PHOSPHORYLATION	732		Mitochondria Evolved from Endosymbiotic Bacteria	768
19.1	Electron-Transfer Reactions in Mitochondria	732		Mutations in Mitochondrial DNA Accumulate	
	Electrons Are Funneled to Universal Electron Acceptors	734		throughout the Life of the Organism Some Mutations in Mitochondrial Genomes Cause Disease	766 767
	Electrons Pass through a Series of Membrane- Bound Carriers Electron Carriers Function in Multienzyme	735		Diabetes Can Result from Defects in the Mitochondria of Pancreatic $oldsymbol{eta}$ Cells	768
	Complexes Mitochondrial Complexes May Associate in	737	PHOT	OSYNTHESIS: HARVESTING LIGHT ENERGY	769
	Respirasomes	743	19.6	General Features of Photophosphorylation	769
	The Energy of Electron Transfer Is Efficiently Conserved in a Proton Gradient	743		Photosynthesis in Plants Takes Place in Chloroplasts	769
	Reactive Oxygen Species Are Generated during Oxidative Phosphorylation	745		Light Drives Electron Flow in Chloroplasts	770
	BOX 19-1 Hot, Stinking Plants and Alternative	140	19.7	Light Absorption	771
	Respiratory Pathways Plant Mitochondria Have Alternative Mechanisms	746		Chlorophylls Absorb Light Energy for Photosynthesis	773
	for Oxidizing NADH	746		Accessory Pigments Extend the Range of Light	773
19.2	ATP Synthesis	747		Absorption Chlorophyll Funnels the Absorbed Energy to	
	ATP Synthase Has Two Functional Domains, F ₀ and F ₁	750		Reaction Centers by Exciton Transfer	774
	ATP Is Stabilized Relative to ADP on the		19.8	The Central Photochemical Event: Light-Driven	77
	Surface of F_1 The Proton Gradient Drives the Release of ATP	750		Electron Flow Bacteria Have One of Two Types of Single	776
	from the Enzyme Surface	751		Photochemical Reaction Center	776
	Each β Subunit of ATP Synthase Can Assume Three Different Conformations	752		Kinetic and Thermodynamic Factors Prevent the	77
	Rotational Catalysis Is Key to the Binding-Change	194		Dissipation of Energy by Internal Conversion In Plants, Two Reaction Centers Act in Tandem	778 779
	Mechanism for ATP Synthesis How Does Proton Flow through the F _o Complex	752		Antenna Chlorophylls Are Tightly Integrated with	5 0
	Produce Rotary Motion?	755		Electron Carriers The Cytochrome $b_6 f$ Complex Links Photosystems	78. s
	Chemiosmotic Coupling Allows Nonintegral Stoichiometries of O_2 Consumption and ATP			II and I	782
	Synthesis	755		Cyclic Electron Flow between PSI and the Cytochrome $b_6 f$ Complex Increases the	
	BOX 19-2 METHODS: Atomic Force Microscopy to Visualize Membrane Proteins	756		Production of ATP Relative to NADPH	78
	The Proton-Motive Force Energizes Active	756		State Transitions Change the Distribution of LHCII between the Two Photosystems	ı 78
	Transport	757		Water Is Split by the Oxygen-Evolving Complex	78
	Shuttle Systems Indirectly Convey Cytosolic NADH into Mitochondria for Oxidation	758	19.9	ATP Synthesis by Photophosphorylation	78
19.3	Regulation of Oxidative Phosphorylation	759		A Proton Gradient Couples Electron Flow and Phosphorylation	78
	Oxidative Phosphorylation Is Regulated by			The Approximate Stoichiometry of	
	Cellular Energy Needs An Inhibitory Protein Prevents ATP Hydrolysis	760		Photophosphorylation Has Been Established The ATP Synthase of Chloroplasts Is Like That of	78
	during Hypoxia	760		Mitochondria	79

19.10	The Evolution of Oxygenic Photosynthesis	788		Fatty Acid Synthase Receives the Acetyl and Malonyl Groups	836
	Chloroplasts Evolved from Ancient Photosynthetic Bacteria	788		The Fatty Acid Synthase Reactions Are Repeated	
	In Halobacterium, a Single Protein Absorbs Light	100		to Form Palmitate	838
	and Pumps Protons to Drive ATP Synthesis	789		Fatty Acid Synthesis Occurs in the Cytosol of Man	-
20				Organisms but in the Chloroplasts of Plants Acetate Is Shuttled out of Mitochondria as Citrate	839 840
20	Carbohydrate Biosynthesis in			Fatty Acid Biosynthesis Is Tightly Regulated	840
	Plants and Bacteria	799		Long-Chain Saturated Fatty Acids Are Synthesized	
20.1	Photographotic Carbohydrate Synthesis	799		from Palmitate	842
20.1	Photosynthetic Carbohydrate Synthesis Plastids Are Organelles Unique to Plant	199		Desaturation of Fatty Acids Requires a	
	Cells and Algae	800		Mixed-Function Oxidase	842
	Carbon Dioxide Assimilation Occurs in	000		BOX 21–1 MEDICINE: Mixed-Function Oxidases,	044
	Three Stages	801		Cytochrome P-450 Enzymes, and Drug Overdoses Eicosanoids Are Formed from 20-Carbon	844
	Synthesis of Each Triose Phosphate from CO_2			Polyunsaturated Fatty Acids	845
	Requires Six NADPH and Nine ATP	808			
	A Transport System Exports Triose Phosphates	000	21.2	Biosynthesis of Triacylglycerols	848
	from the Chloroplast and Imports Phosphate Four Enzymes of the Calvin Cycle Are Indirectly	809		Triacylglycerols and Glycerophospholipids Are	0.40
	Activated by Light	810		Synthesized from the Same Precursors Triacylglycerol Biosynthesis in Animals Is	848
				Regulated by Hormones	849
20.2	Photorespiration and the C ₄ and CAM Pathways	812		Adipose Tissue Generates Glycerol 3-phosphate	010
	Photorespiration Results from Rubisco's	812		by Glyceroneogenesis	850
	Oxygenase Activity The Salvage of Phosphoglycolate Is Costly	813		Thiazolidinediones Treat Type 2 Diabetes by	
	In C ₄ Plants, CO ₂ Fixation and Rubisco Activity Ar			Increasing Glyceroneogenesis	852
	Spatially Separated	815	21.3	Biosynthesis of Membrane Phospholipids	852
	BOX 20-1 Will Genetic Engineering of Photosynthetic			Cells Have Two Strategies for Attaching	
	Organisms Increase Their Efficiency?	816		Phospholipid Head Groups	852
	In CAM Plants, CO ₂ Capture and Rubisco Action			Phospholipid Synthesis in $E.\ coli$ Employs	
	Are Temporally Separated	818		CDP-Diacylglycerol	853
20.3	Biosynthesis of Starch and Sucrose	818		Eukaryotes Synthesize Anionic Phospholipids from CDP-Diacylglycerol	855
	ADP-Glucose Is the Substrate for Starch Synthesis	;		Eukaryotic Pathways to Phosphatidylserine,	099
	in Plant Plastids and for Glycogen Synthesis in			Phosphatidylethanolamine, and	
	Bacteria	. 818		Phosphatidylcholine Are Interrelated	855
	UDP-Glucose Is the Substrate for Sucrose Synthes	ıs 819		Plasmalogen Synthesis Requires Formation of	
	in the Cytosol of Leaf Cells Conversion of Triose Phosphates to Sucrose and	010		an Ether-Linked Fatty Alcohol	856
	Starch Is Tightly Regulated	820		Sphingolipid and Glycerophospholipid Synthesis Share Precursors and Some Mechanisms	857
20.4				Polar Lipids Are Targeted to Specific Cellular	091
20.4	Synthesis of Cell Wall Polysaccharides: Plant	021		Membranes	857
	Cellulose and Bacterial Peptidoglycan	821	24.4	Chalantanal Chamida and Language	
	Cellulose Is Synthesized by Supramolecular Structures in the Plasma Membrane	822	21.4	Cholesterol, Steroids, and Isoprenoids:	050
	Lipid-Linked Oligosaccharides Are Precursors for	022		Biosynthesis, Regulation, and Transport	859
	Bacterial Cell Wall Synthesis	823		Cholesterol Is Made from Acetyl-CoA in	860
20 E	Integration of Carhohudrate Metaholism in			Four Stages Cholesterol Has Several Fates	864
20.5	Integration of Carbohydrate Metabolism in	825		Cholesterol and Other Lipids Are Carried on	004
	the Plant Cell	023		Plasma Lipoproteins	864
	Gluconeogenesis Converts Fats and Proteins to Glucose in Germinating Seeds	825		BOX 21-2 MEDICINE: ApoE Alleles Predict Incidence of	
	Pools of Common Intermediates Link Pathways in	020		Alzheimer Disease	866
	Different Organelles	826		Cholesteryl Esters Enter Cells by Receptor-	
	_			Mediated Endocytosis	868
21	Lipid Biosynthesis	833		HDL Carries Out Reverse Cholesterol Transport Cholesterol Synthesis and Transport Is Regulated	869
21.1	Biosynthesis of Fatty Acids and Eicosanoids	833		at Several Levels	869
C 1 · I	Malonyl-CoA Is Formed from Acetyl-CoA and			Dysregulation of Cholesterol Metabolism Can	200
	Bicarbonate	833		Lead to Cardiovascular Disease	871
	Fatty Acid Synthesis Proceeds in a Repeating			BOX 21-3 MEDICINE: The Lipid Hypothesis and the	
	Reaction Sequence	834		Development of Statins	872
	The Mammalian Fatty Acid Synthase Has Multiple	004		Reverse Cholesterol Transport by HDL Counters	050
	Active Sites	834		Plaque Formation and Atherosclerosis	873

22	Steroid Hormones Are Formed by Side-Chain Cleavage and Oxidation of Cholesterol Intermediates in Cholesterol Biosynthesis Have Many Alternative Fates Biosynthesis of Amino Acids,	874 874		Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively Purine and Pyrimidine Bases Are Recycled by Salvage Pathways Excess Uric Acid Causes Gout Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways	920 922 922 923
22.1	Overview of Nitrogen Metabolism	881 881	23	Hormonal Regulation and Integration	
22.1	The Nitrogen Cycle Maintains a Pool of Biologically Available Nitrogen			of Mammalian Metabolism	929
	Nitrogen Is Fixed by Enzymes of the Nitrogenase Complex	882	23.1	Hormones: Diverse Structures for Diverse Functions	929
	BOX 22-1 Unusual Lifestyles of the Obscure but Abundant Ammonia Is Incorporated into Biomolecules	884		The Detection and Purification of Hormones Requires a Bioassay	930
	through Glutamate and Glutamine Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism	888 889		BOX 23-1 MEDICINE: How Is a Hormone Discovered? The Arduous Path to Purified Insulin Hormones Act through Specific High-Affinity	931
	Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides			Cellular Receptors Hormones Are Chemically Diverse	932 933
22.2	Biosynthesis of Amino Acids α-Ketoglutarate Gives Rise to Glutamate,	891		Hormone Release Is Regulated by a Hierarchy of Neuronal and Hormonal Signals	936
	Glutamine, Proline, and Arginine Serine, Glycine, and Cysteine Are Derived from	892	23.2	Tissue-Specific Metabolism: The Division of Labor The Liver Processes and Distributes Nutrients	939
	3-Phosphoglycerate Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate	892		Adipose Tissues Store and Supply Fatty Acids Brown Adipose Tissue Is Thermogenic Muscles Use ATP for Mechanical Work	943 944 944
	and Pyruvate Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine	895 898		BOX 23-2 Creatine and Creatine Kinase: Invaluable Diagnostic Aids and the Muscle Builder's Friends The Brain Uses Energy for Transmission of	946
	Histidine Biosynthesis Uses Precursors of Purine Biosynthesis Amino Acid Biosynthesis Is under Allosteric	898		Electrical Impulses Blood Carries Oxygen, Metabolites, and Hormones	948 949
	Regulation	899	23.3	Hormonal Regulation of Fuel Metabolism Insulin Counters High Blood Glucose	951 951
22.3		902		Pancreatic β Cells Secrete Insulin in Response to	991
	Glycine Is a Precursor of Porphyrins	902		Changes in Blood Glucose	953
	Heme Is the Source of Bile Pigments	904		Glucagon Counters Low Blood Glucose	955
	BOX 22-2 MEDICINE: On Kings and Vampires Amino Acids Are Precursors of Creatine and Glutathione	906 906		During Fasting and Starvation, Metabolism Shifts to Provide Fuel for the Brain	956
	D-Amino Acids Are Found Primarily in Bacteria	907		Epinephrine Signals Impending Activity Cortisol Signals Stress, Including Low Blood Glucose	958 958 e
	Aromatic Amino Acids Are Precursors of Many Plant Substances	908		Diabetes Mellitus Arises from Defects in Insulin Production or Action	959
	Biological Amines Are Products of Amino Acid Decarboxylation	000	23.4	Obesity and the Regulation of Body Mass	960
	Arginine Is the Precursor for Biological Synthesis of Nitric Oxide	908 909		Adipose Tissue Has Important Endocrine Functions Leptin Stimulates Production of Anorexigenic	
22.4	3	910		Peptide Hormones Leptin Triggers a Signaling Cascade That Regulate	962 es
	De Novo Purine Nucleotide Synthesis Begins with PRPP	912		Gene Expression The Leptin System May Have Evolved to Regulate	
	Purine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	914		the Starvation Response Insulin Acts in the Arcuate Nucleus to Regulate	963
	Pyrimidine Nucleotides Are Made from Aspartate, PRPP, and Carbamoyl Phosphate Pyrimidine Nucleotide Biosynthesis Is Regulated	915		Eating and Energy Conservation Adiponectin Acts through AMPK to Increase	963
	by Feedback Inhibition Nucleoside Monophosphates Are Converted to	916		Insulin Sensitivity mTORC1 Activity Coordinates Cell Growth with	964
	Nucleoside Triphosphates Ribonucleotides Are the Precursors of	916		the Supply of Nutrients and Energy Diet Regulates the Expression of Genes Central to	
	Deoxyribonucleotides Thymidylate Is Derived from dCDP and dUMP	917 920		Maintaining Body Mass Short-Term Eating Behavior Is Influenced by Ghrelin and PYY _{3–36}	965 966

	Microbial Symbionts in the Gut Influence Energy Metabolism and Adipogenesis	968	25.2	DNA Repair Mutations Are Linked to Cancer	1027 1027
23.5	Obesity, the Metabolic Syndrome, and Type 2 Diabetes In Type 2 Diabetes the Tissues Become Insensitive to Insulin	968 e 968		All Cells Have Multiple DNA Repair Systems The Interaction of Replication Forks with DNA Damage Can Lead to Error-Prone Translesion DNA Synthesis BOX 25-1 MEDICINE: DNA Repair and Cancer	1028 1034 1037
	Type 2 Diabetes Is Managed with Diet, Exercise,	970	25.3	DNA Recombination	1038
	and Medication		LJ.J	Bacterial Homologous Recombination Is a DNA Repair Function	1039
	INFORMATION PATHWAYS	977		Eukaryotic Homologous Recombination Is Required for Proper Chromosome	
24	Genes and Chromosomes	979		Segregation during Meiosis Recombination during Meiosis Is Initiated with	1041
24.1	Chromosomal Elements Genes Are Segments of DNA That Code for	979		Double-Strand Breaks BOX 25-2 MEDICINE: Why Proper Chromosomal	1043
	Polypeptide Chains and RNAs DNA Molecules Are Much Longer Than the	979		Site-Specific Recombination Results in Precise	1045
	Cellular or Viral Packages That Contain Them Eukaryotic Genes and Chromosomes Are	980		DNA Rearrangements Transposable Genetic Elements Move from One Location to Another	1046 1049
24.2	Very Complex DNA Supercoiling	984 985		Immunoglobulin Genes Assemble by Recombination	
24.2	Most Cellular DNA Is Underwound DNA Underwinding Is Defined by Topological	986	26	RNA Metabolism	1057
	Linking Number	988	26.1	DNA-Dependent Synthesis of RNA	1058
	Topoisomerases Catalyze Changes in the Linking Number of DNA	989		RNA Is Synthesized by RNA Polymerases	1058
	DNA Compaction Requires a Special Form of	909		RNA Synthesis Begins at Promoters	1060
	Supercoiling BOX 24-1 MEDICINE: Curing Disease by Inhibiting	990		Transcription Is Regulated at Several Levels BOX 26-1 METHODS: RNA Polymerase Leaves	1061 1062
	Topoisomerases	992		Its Footprint on a Promoter Specific Sequences Signal Termination of RNA	1002
24.3	The Structure of Chromosomes	994		Synthesis	1063
	Chromatin Consists of DNA and Proteins	994		Eukaryotic Cells Have Three Kinds of Nuclear RNA Polymerases	1064
	Histones Are Small, Basic Proteins Nucleosomes Are the Fundamental Organizational	995 I 995		RNA Polymerase II Requires Many Other Protein Factors for Its Activity	1064
	Units of Chromatin Nucleosomes Are Packed into Successively			DNA-Dependent RNA Polymerase Undergoes Selective Inhibition	1068
	Higher-Order Structures	997			
	BOX 24-2 MEDICINE: Epigenetics, Nucleosome	000	26.2	RNA Processing	1069
	Structure, and Histone Variants Condensed Chromosome Structures Are	998		Eukaryotic mRNAs Are Capped at the 5' End Both Introns and Exons Are Transcribed from	1070
	Maintained by SMC Proteins	1000		DNA into RNA	1070
	Bacterial DNA Is Also Highly Organized	1002		RNA Catalyzes the Splicing of Introns	1070
25	DNA Metabolism	1009		Eukaryotic mRNAs Have a Distinctive 3' End Structure	1075
		1011		A Gene Can Give Rise to Multiple Products by	
25.1	DNA Replication Follows a Set of Fundamental			Differential RNA Processing Ribosomal RNAs and tRNAs Also Undergo	1075
	Rules DNA Is Degraded by Nucleases	1011 1013		Processing	1077
	DNA Is Synthesized by DNA Polymerases	1013		Special-Function RNAs Undergo Several Types of Processing	1081
	Replication Is Very Accurate	1015		RNA Enzymes Are the Catalysts of Some	1001
	E. coli Has at Least Five DNA Polymerases	1016		Events in RNA Metabolism	1082
	DNA Replication Requires Many Enzymes and Protein Factors Profilestion of the F. acki Chromosome Proceeds	1017		Cellular mRNAs Are Degraded at Different Rates Polynucleotide Phosphorylase Makes Random	1084
	Replication of the <i>E. coli</i> Chromosome Proceeds in Stages	1019		RNA-Like Polymers	1085
	Replication in Eukaryotic Cells Is Similar		26.3	RNA-Dependent Synthesis of RNA and DNA	1085
	but More Complex	1025		Reverse Transcriptase Produces DNA from	
	Viral DNA Polymerases Provide Targets	1000		Viral RNA	1086
	for Antiviral Therapy	1026		Some Retroviruses Cause Cancer and AIDS	1088

	Many Transposons, Retroviruses, and Introns May Have a Common Evolutionary Origin	7 1088		Protein Degradation Is Mediated by Specialized Systems in All Cells	
	BOX 26-2 MEDICINE: Fighting AIDS with Inhibitors of HIV Reverse Transcriptase	1089	28	Regulation of Gene Expression	1155
	Telomerase Is a Specialized Reverse Transcriptase Some Viral RNAs Are Replicated by	1089	28.1	Principles of Gene Regulation RNA Polymerase Binds to DNA at Promoters	1156 1156
	RNA-Dependent RNA Polymerase RNA Synthesis Offers Important Clues to Biochemical Evolution	1092 1092		Transcription Initiation Is Regulated by Proteins That Bind to or near Promoters	1157
	BOX 26-3 METHODS: The SELEX Method for Generating RNA Polymers with New Functions	1095		Many Bacterial Genes Are Clustered and Regulated in Operons The <i>lac</i> Operon Is Subject to Negative Regulation	1158 n 1159
	BOX 26–4 An Expanding RNA Universe Filled with TUF RNAs			Regulatory Proteins Have Discrete DNA-Binding Domains	
27		1103		Regulatory Proteins Also Have Protein-Protein Interaction Domains	1163
27.1	The Genetic Code The Genetic Code Was Creeked Heing Artificial	1103			
	The Genetic Code Was Cracked Using Artificial mRNA Templates BOX 27-1 Exceptions That Prove the Rule: Natural	1104	28.2	Regulation of Gene Expression in Bacteria The <i>lac</i> Operon Undergoes Positive Regulation Many Genes for Amino Acid Biosynthetic Enzym	1165 1165
	Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More	1108		Are Regulated by Transcription Attenuation Induction of the SOS Response Requires	1167
	than One Codon The Genetic Code Is Mutation-Resistant Translational Example History and DNA Editing	1108 1110		Destruction of Repressor Proteins Synthesis of Ribosomal Proteins Is Coordinated	1169
	Translational Frameshifting and RNA Editing Affect How the Code Is Read	1111		with rRNA Synthesis The Function of Some mRNAs Is Regulated by Small RNAs in Cis or in Trans	1170 1171
27.2	Protein Synthesis Protein Biosynthesis Takes Place in Five Stages	1113 1114		Some Genes Are Regulated by Genetic	
	The Ribosome Is a Complex Supramolecular		20.2	Recombination	1173
	Machine BOX 27-2 From an RNA World to a Protein World	1115 1117	28.3	Regulation of Gene Expression in Eukaryotes Transcriptionally Active Chromatin Is Structurall	1175
	Transfer RNAs Have Characteristic Structural Features	1118		Distinct from Inactive Chromatin Most Eukaryotic Promoters Are Positively	1175
	Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs	1119		Regulated	1176
	Proofreading by Aminoacyl-tRNA Synthetases Interaction between an Aminoacyl-tRNA Syntheta	1121 ase		DNA-Binding Activators and Coactivators Facilita Assembly of the General Transcription Factor The Genes of Galactose Metabolism in Yeast Are	
	and a tRNA: A "Second Genetic Code" BOX 27-3 Natural and Unnatural Expansion of	1122		Subject to Both Positive and Negative Regulation	1180
	the Genetic Code	1124		Transcription Activators Have a Modular Structure	
	Stage 2: A Specific Amino Acid Initiates Protein Synthesis	1127		Eukaryotic Gene Expression Can Be Regulated b Intercellular and Intracellular Signals)y 1182
	Stage 3: Peptide Bonds Are Formed in the Elongation Stage Stage 4: Termination of Polypeptide Synthesis	1129	7	Regulation Can Result from Phosphorylation of Nuclear Transcription Factors Many Eukaryotic mRNAs Are Subject to	1184
	Requires a Special Signal BOX 27-4 Induced Variation in the Genetic Code:	1134		Translational Repression Posttranscriptional Gene Silencing Is Mediated by	1184
	Nonsense Suppression Stage 5: Newly Synthesized Polypeptide Chains	1134		RNA Interference RNA-Mediated Regulation of Gene Expression	1185
	Undergo Folding and Processing Protein Synthesis Is Inhibited by Many Antibiotics	1136		Takes Many Forms in Eukaryotes Development Is Controlled by Cascades of	1186
	and Toxins	1138	Ç	Regulatory Proteins Stem Cells Have Developmental Potential That	1186
27.3	Protein Targeting and Degradation	1139		Can Be Controlled	1191
	Posttranslational Modification of Many Eukaryotic Proteins Begins in the Endoplasmic Reticulum Glycocylation Plays a Key Pole in Protein Toyaction	1140	ł	30X 28-1 Of Fins, Wings, Beaks, and Things	1194
	Glycosylation Plays a Key Role in Protein Targeting Signal Sequences for Nuclear Transport Are Not	3 1141	Abbre	eviated Solutions to Problems	AS-1
	Cleaved Bacteria Also Use Signal Sequences for Protein	1143	Gloss	•	G-1
	Targeting Cells Import Proteins by Receptor-Mediated	1145	Credi	ts	C-0
	Endocytosis	1146	Index		1-1