Contents

Pre	Preface v				
1	Introduction				
	1.1	Why ra	ndom fields?	1	
	1.2	Some e	examples	3	
	1.3	Fundar	nental concepts	8	
		1.3.1	Random functions in a broad sense	9	
		1.3.2	Gaussian random vectors	13	
		1.3.3	Gaussian random functions	14	
		1.3.4	Random fields	16	
		1.3.5	Stochastic measures and integrals	17	
		1.3.6	Integral representation of random functions	19	
		1.3.7	Random trajectories	21	
		1.3.8	Stochastic differential, Ito integrals	22	
		1.3.9	Brownian motion	22	
		1.3.10	Multidimensional diffusion and Fokker–Planck equation	25	
		1.3.11	Central limit theorem and convergence of a Poisson process to		
			a Gaussian process	26	
2	Sto	chastic s	simulation of vector Gaussian random fields	29	
	2.1	Introdu	uction	29	
	2.2	Discret	te expansions related to the spectral representations of Gaussian		
		randon	n fields	30	
		2.2.1	Spectral representations	30	
		2.2.2	Series expansions	31	
		2.2.3	Expansion with an even complex orthonormal system	31	
		2.2.4	Expansion with a real orthonormal system	32	
		2.2.5	Complex valued orthogonal expansions	33	
	2.3 Wavelet expansions		et expansions	33	
		2.3.1	Fourier wavelet expansions	34	

		2.3.2	Wavelet expansion	35
		2.3.3	Moving averages	36
	2.4	Rando	mized spectral models	37
		2.4.1	Randomized spectral models defined through stochastic	
			integrals	37
		2.4.2	Stratified RSM for homogeneous random fields	39
	2.5	Fourie	r wavelet models	39
		2.5.1	Meyer wavelet functions	40
		2.5.2	Evaluation of the coefficients $\mathcal{F}_m^{(\phi)}$ and $\mathcal{F}_m^{(\psi)}$	40
		2.5.3	Cut-off parameters	42
		2.5.4	Choice of parameters	43
	2.6	Fourie	r wavelet models of homogeneous random fields based on	
		randor	nization of plane wave decomposition	47
		2.6.1	Plane wave decomposition of homogeneous random fields	47
		2.6.2	Decomposition with fixed nodes	50
		2.6.3	Decomposition with randomly distributed nodes	52
		2.6.4	Some examples	54
		2.6.5	Flow in a porous media in the first order approximation	56
		2.6.6	Fourier wavelet models of Gaussian random fields	57
	2.7	Compa	arison of Fourier wavelet and randomized spectral models	58
		2.7.1	Some technical details of RSM	58
		2.7.2	Some technical details of FWM	60
		2.7.3	Ensemble averaging	62
		2.7.4	Space averaging	62
	2.8	Conclu	usions	63
	2.9	Appen	dices	65
		2.9.1	Appendix A. Positive definiteness of the matrix \mathcal{B}	65
		2.9.2	Appendix B. Proof of Proposition 2.1	65
3	Stoc	hastic	Lagrangian models of turbulent flows: Relative dispersion of	
	a pa	ir of flu	uid particles	70
	3.1	Introd	uction	70
	3.2	Critici	sm of 2-particle models	73

	3.3	The quasi-1-dimensional Lagrangian model of relative dispersion	77
		3.3.1 Quasi-1-dimensional analog of formula (2.14a)	78
		3.3.2 Models with a finite-order consistency	80
		3.3.3 Explicit form of the model (3.26, 3.27)	83
		3.3.4 Example	88
	3.4	A 3-dimensional model of relative dispersion	90
	3.5	Lagrangian models consistent with the Eulerian statistics	92
		3.5.1 Diffusion approximation	92
		3.5.2 Relation to the well-mixed condition	94
		3.5.3 A choice of the coefficients a_i and b_{ij}	95
	3.6	Conclusions	97
4	A n	ew Lagrangian model of 2-particle relative turbulent dispersion	98
	4.1	Introduction	98
	4.2	An examination of Durbin's nonlinear model	98
	4.3	Mathematical formulation of a new model 1	00
	4.4	A qualitative analysis of the problem (4.14) for symmetric $\xi(\tau)$ 1	02
		4.4.1 Analysis of the problem (4.14) in the deterministic case 1	02
		4.4.2 Analysis of the problem (4.14) for stochastic $\xi(\tau)$ 1	03
	4.5	Qualitative analysis of the problem (4.14) in the general case 1	08
5	The	e combined Eulerian–Lagrangian model 1	13
	5.1	Introduction 1	13
	5.2	2-particle models 1	17
		5.2.1 Eulerian stochastic models of high-Reynolds-number	
		pseudoturbulence 1	17
	5.3	A new 2-particle Eulerian-Lagrangian stochastic model 1	20
		5.3.1 Formulation of 2-particle Eulerian–Lagrangian model 1	20
		5.3.2 Models for the p. d. f. of the Eulerian relative velocity 1	23
	5.4	Appendix 1	25
6	Stoc	chastic Lagrangian models for 2-particle relative dispersion in	
	higł	h-Reynolds-number turbulence 1	29
	6.1	Introduction 1	29

	6.2	Preliminaries
	6.3	A closure of the quasi-1-dimensional model of relative dispersion 131
	6.4	Choice of the model (6.1) for isotropic turbulence
	6.5	The model of relative dispersion of two particles in a locally isotropicturbulence1356.5.1Specification of the model1356.5.2Numerical analysis of the Q1D-model (6.30)137
	6.6	Model of the relative dispersion in intermittent locally isotropic
		turbulence
_	6.7	
7	Stoc Nun	erical results 142
	7.1	Introduction
	7.2	Classical pseudoturbulence model 143 7.2.1 Randomized model of classical pseudoturbulence 143 7.2.2 Mean square separation of two particles in classical 143
		pseudoturbulence
	7.3	Calculations by the combined Eulerian–Lagrangian stochastic model1497.3.1Mean square separation of two particles1497.3.2Thomson's "two-to-one" reduction principle1527.3.3Concentration fluctuations154
	7.4	Technical remarks
	7.5	Conclusion
8	The	1-particle stochastic Lagrangian model for turbulent dispersion in
	hori	zontally homogeneous turbulence 159
	8.1	Introduction
	8.2	Choice of the coefficients in the Ito equation
	8.3	2D stochastic model with Gaussian p. d. f
	8.4	Numerical experiments
9	Dire	ct and adjoint Monte Carlo for the footprint problem 171
	9.1	Introduction

	9.2	Formul	ation of the problem	172
	9.3	Stochas	stic Lagrangian algorithm	173
		9.3.1	Direct Monte Carlo algorithm	174
		9.3.2	Adjoint algorithm	176
	9.4	Impene	trable boundary	178
	9.5	Reactin	ng species	180
	9.6	Numer	ical simulations	183
	9.7	Conclu	sion	187
	9.8	Append	dices	188
		9.8.1	Appendix A. Flux representation	188
		9.8.2	Appendix B. Probabilistic representation	188
		9.8.3	Appendix C. Forward and backward trajectory estimators	189
10	Lag	rangian	stochastic models for turbulent dispersion in an	
	atm	ospheri	c boundary layer	193
	10.1	Introdu	ection	193
	10.2	Neutral	Ily stratified boundary layer	197
		10.2.1	General case of Eulerian p. d. f	197
		10.2.2	Gaussian p. d. f.	200
	10.3	Compa	rison with other models and measurements	201
		10.3.1	Comparison with measurements in an ideally-neutral surface	
			layer (INSL)	201
		10.3.2	Comparison with the wind tunnel experiment by Raupach and	204
			Legg (1983)	204
	10.4	Convec	ctive case	207
	10.5	Bounda	ary conditions	211
	10.6	Conclu	sion	212
	10.7	Appen	dices	213
		10.7.1	Appendix A. Derivation of the coefficients in the Gaussian	
			case	213
		10.7.2	Appendix B. Relation to other models	215

11	Analysis of	the relative dispersion of two particles by Lagrangian	010
	stochastic n	nodels and DNS methods	218
	11.1 Introdu	iction	218
	11.2 Basic a	assumptions	220
	11.2.1	Markov assumption	221
	11.2.2	Consistency with the second Kolmogorov similarity	
		hypothesis	221
	11.2.3	Thomson's well-mixed condition	222
	11.3 Well-n	nixed Lagrangian stochastic models	222
	11.3.1	Quadratic-form models	223
	11.3.2	Quasi-1-dimensional models	224
	11.3.3	3-dimensional extension of Q1D models	225
	11.4 Stocha	stic Lagrangian models based on the moments approximation	
	method	1	226
	11.4.1	Moments approximation conditions	226
	11.4.2	Realizability of LS models based on the moments	
		approximation method	227
	11.5 Compa	arison of different models of relative dispersion for the inertial	
	subran	ge of a fully developed turbulence	229
	11.5.1	Q1D quadratic-form model of Borgas and Yeung	229
	11.5.2	Comparison of different models in the inertial subrange	231
	11.6 Compa	arison of different Q1D models of relative dispersion for	
	modes	tly large Reynolds number turbulence ($Re_{\lambda} \simeq 240$)	232
	11.6.1	Parametrization of Eulerian statistics	232
	11.6.2	Bi-Gaussian p. d. f.	234
	11.6.3	Q1D quadratic-form model	236
12	Evaluation	of mean concentration and fluxes in turbulent flows by	
	Lagrangia	n stochastic models	238
	12.1 Introdu	action	. 238
	12.2 Formu	lation of the problem	. 239
	12.3 Monte	Carlo estimators for the mean concentration and fluxes	. 243
	12.3.1	Forward estimator	. 244

Contents

	12.3.2 Modified forward estimators in case of horizontally
	homogeneous turbulence
	12.3.3 Backward estimator 250
	12.4 Application to the footprint problem
	12.5 Conclusion
	12.6 Appendices 253 12.6.1 Appendix A. Representation of concentration in Lagrangian
	description
	12.6.3 Appendix C. Derivation of the relation between the forward and backward densities
13	Stochastic Lagrangian footnrint calculations over a surface with an
15	abrupt change of roughness height 258
	13.1 Introduction
	13.2 The governing equations 250
	13.2.1 Evaluation of footprint functions 260
	13.3 Results 263 13.3.1 Footprint functions of concentration and flux 263
	13.4 Discussion and conclusions
	13.5 Appendices 277 13.5.1 Appendix A. Dimensionless mean-flow equations 277 13.5.2 Appendix B. Lagrangian stochastic trajectory model 278
14	Stochastic flow simulation in 3D porous media 280
	14.1 Introduction
	14.2 Formulation of the problem
	14.3 Direct numerical simulation method: DSM-SOR
	14.4 Randomized spectral model (RSM)
	14.5 Testing the simulation procedure
	14.6 Evaluation of Eulerian and Lagrangian statistical characteristics by the DNS-SOR method
	14.6.1 Eulerian statistical characteristics 292

	14.6.2 Lagrangian statistical characteristics	ŧ
	14.7 Conclusions and discussion	3
15	A Lagrangian stochastic model for the transport in statistically	
	homogeneous porous media 300)
	15.1 Introduction)
	15.2 Direct simulation method	l
	15.2.1 Random flow model	1
	15.2.2 Numerical simulation	3
	15.2.3 Evaluation of Eulerian characteristics	5
	15.2.4 Evaluation of Lagrangian characteristics)
	15.3 Construction of the Langevin-type model	1
	15.3.1 Introduction	1
	15.3.2 Langevin model for an isotropic porous medium	5
	15.3.3 Expressions of the drift terms)
	15.4 Numerical results and comparison against the DSM	I
	15.5 Conclusions 201	1
		-
16	Coagulation of aerosol particles in intermittent turbulent flows326326	5
16	15.5 Conclusions 321 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326	5
16	15.5 Conclusions 326 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 329	5
16	15.5 Conclusions 326 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 329 16.3 Models of the energy dissipation rate 332	5 5 9 2
16	15.5 Conclusions 324 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 329 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen (P&Ch) 332	5 5 2 2
16	15.5 Conclusions 324 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 326 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen (P&Ch) 332 16.3.2 The model by Borgas and Sawford (B&S) 334	- 5 5 2 2 4
16	15.5 Conclusions 324 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 326 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen (P&Ch) 332 16.3.2 The model by Borgas and Sawford (B&S) 334 16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic	5 5 9 2 1
16	15.5 Conclusions 324 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 329 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen (P&Ch) 332 16.3.2 The model by Borgas and Sawford (B&S) 334 16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic coagulation regime 335	- 5 5 2 2 4 5
16	15.5 Conclusions 324 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 329 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen (P&Ch) 332 16.3.2 The model by Borgas and Sawford (B&S) 334 16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic coagulation regime 335 16.4.1 The total number of clusters and the mean cluster size 335	5 5 2 2 4 5 7
16	Coagulation of aerosol particles in intermittent turbulent flows32616.1 Introduction32616.2 Analysis of the fluctuations in the size spectrum32916.3 Models of the energy dissipation rate33216.3.1 The model by Pope and Chen $(P\&Ch)$ 33216.3.2 The model by Borgas and Sawford $(B\&S)$ 33416.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic33516.4.1 The total number of clusters and the mean cluster size33516.4.2 The functions $N_3(t)$ and $N_{10}(t)$ 335	5 5 7 2 2 4 5 7 9
16	15.5 Conclusions 324 Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 326 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen ($P\&Ch$) 332 16.3.2 The model by Borgas and Sawford ($B\&S$) 334 16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic coagulation regime 335 16.4.1 The total number of clusters and the mean cluster size 335 16.4.2 The functions $N_3(t)$ and $N_{10}(t)$ 335 16.4.3 The size spectrum N_l for different time instances 340	5 5 7 2 2 4 5 7 9 0
16	15.5 Conclusions321Coagulation of aerosol particles in intermittent turbulent flows32616.1 Introduction32616.2 Analysis of the fluctuations in the size spectrum32916.3 Models of the energy dissipation rate33216.3.1 The model by Pope and Chen $(P\&Ch)$ 33216.3.2 The model by Borgas and Sawford $(B\&S)$ 33416.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic33516.4.1 The total number of clusters and the mean cluster size33516.4.2 The functions $N_3(t)$ and $N_{10}(t)$ 33916.4.3 The size spectrum N_I for different time instances34016.4.4 Comparative analysis for two different models of the energy dissipation rate341	- 5 5 7 2 2 4 5 7 9 0 1
16	Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 326 16.3 Models of the energy dissipation rate 326 16.3 Models of the energy dissipation rate 332 16.3 Introduction 332 16.3 Models of the energy dissipation rate 332 16.3 Models of the energy dissipation rate 332 16.3 Intermodel by Pope and Chen (P&Ch) 332 16.3.2 The model by Borgas and Sawford (B&S) 334 16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic 335 16.4.1 The total number of clusters and the mean cluster size 335 16.4.2 The functions $N_3(t)$ and $N_{10}(t)$ 339 16.4.3 The size spectrum N_I for different time instances 340 16.4.4 Comparative analysis for two different models of the energy dissipation rate 341 16.5 The case of a coagulation coefficient with no dependence on the 341	5 5 9 2 2 4 5 7 9 0 1
16	Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 326 16.3 Models of the energy dissipation rate 332 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen ($P\&Ch$) 332 16.3.2 The model by Borgas and Sawford ($B\&S$) 334 16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic coagulation regime 335 16.4.1 The total number of clusters and the mean cluster size 335 16.4.2 The functions $N_3(t)$ and $N_{10}(t)$ 339 16.4.3 The size spectrum N_I for different time instances 340 16.4.4 Comparative analysis for two different models of the energy dissipation rate 341 16.5 The case of a coagulation coefficient with no dependence on the cluster size 342	5 7 2 2 4 5 7 9 0 1
16	Coagulation of aerosol particles in intermittent turbulent flows 326 16.1 Introduction 326 16.2 Analysis of the fluctuations in the size spectrum 326 16.3 Models of the energy dissipation rate 332 16.3.1 The model by Pope and Chen ($P\&Ch$) 332 16.3.2 The model by Borgas and Sawford ($B\&S$) 334 16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic 335 16.4.1 The total number of clusters and the mean cluster size 335 16.4.2 The functions $N_3(t)$ and $N_{10}(t)$ 335 16.4.3 The size spectrum N_I for different time instances 340 16.4.4 Comparative analysis for two different models of the energy dissipation rate 342 16.5 The case of a coagulation coefficient with no dependence on the cluster size 342 16.5 The case of a coagulation coefficient with no dependence on the cluster size 342 16.6 Simulation of acagulation processes in turbulant acagulation ratio 342	6 6 7 9 2 2 4 5 7 9 1 2

•

	16.7 Conclusion
	16.8 Appendix. Derivation of the coagulation coefficient
17	Stokes flows under random boundary velocity excitations 349
	17.1 Introduction
	17.2 Exterior Stokes problem35217.2.1 Poisson formula in polar coordinates353
	17.3 K-L expansion of velocity35617.3.1 White noise excitations35617.3.2 General case of homogeneous excitations361
	17.4 Correlation function of the pressure36617.4.1 White noise excitations36617.4.2 Homogeneous random boundary excitations36817.4.3 Vorticity and stress tensor368
	17.5 Interior Stokes problem
	17.6 Numerical results
Bib	liography 381
Ind	ex 397