Contents

The	Rauzy	y Gasket	1
Pier	re Arno	oux and Štěpán Starosta	
1	Introduction		1
2	Preliminaries		
	2.1	Background: Complexity and Sturmian Words	3
	2.2	Arnoux-Rauzy Words and Episturmian Words: Definition	4
	2.3	Ternary AR Words: Renormalization	5
3	The Rauzy Gasket		
	3.1	The Rauzy Gasket as an Iterated Function System	8
	3.2	Symbolic Dynamics for the Rauzy Gasket	10
4	Relation with the Sierpiński Gasket and a Generalization		
	of the Question Mark Function 1		
	4.1	The Minkowski Question Mark Function	12
	4.2	The Sierpiński Gasket	14
	4.3	A Generalization of the Minkowski Question Mark	
		Function	15
5	The A	pollonian Gasket	16
6	Relation with the Fully Subtractive Algorithm		
	6.1	The Fully Subtractive Algorithm	18
	6.2	The Fully Subtractive Algorithm as an Extension	
		of the Rauzy Gasket	19
	6.3	Two Properties of the Rauzy Gasket	20
7		Remarks	21
Refe	rences		22
On 1	the Ha	usdorff Dimension of Graphs of Prevalent	
Con	tinuou	s Functions on Compact Sets	25
Fréd	éric Ba	yart and Yanick Heurteaux	
1		uction	25
2		ence	27
3	On the	Graph of a Perturbed Fractional Brownian Motion	28

4	Proof of Theorem 3			
5	The Case of α -Hölderian Functions			
Ret	ferences			
	usdorff Dimension and Diophantine Approximation			
	nn Bugeaud			
1	Introduction			
2	Three Families of Exponents of Approximation			
-	3 Approximation to Points in the Middle Third Cantor Set			
Re	ferences			
Sin	gular Integrals on Self-similar Subsets of Metric Groups			
Vas	silis Chousionis and Pertti Mattila			
1	Introduction			
2	The One-Dimensional Case			
3	The Higher-Dimensional Case			
4	Self-similar Sets and Singular Integrals			
5	Self-similar Sets in Heisenberg Groups			
6	Riesz-Type Kernels in Heisenberg Groups			
7	$\Delta_{\rm h}$ -Removability and Singular Integrals			
8	$\Delta_{\rm h}$ -Removable Self-similar Cantor Sets in \mathbb{H}^n			
9	Concluding Comments			
Re	ferences			
М	ultivariate Davenport Series			
	naud Durand and Stéphane Jaffard			
1	Introduction			
2	Relationships Between Davenport and Fourier Series			
$\frac{2}{3}$	Discontinuities of Davenport Series			
4	The Jump Operator			
5	Pointwise Hölder Regularity			
6	Sparse Davenport Series			
U	6.1 Sparse Sets and Link with Lacunary and Hadamard			
	Sequences			
	6.2 Decay of Sequences with Sparse Support and Behavior			
	of the Jump Operator			
	6.3 Pointwise Regularity of Sparse Davenport Series			
7	Implications for Multifractal Analysis			
8	Convergence and Global Regularity of Davenport Series			
0	8.1 Preliminaries on Multivariate Arithmetic Functions			
	8.2 Davenport Expansions Versus Fourier Expansions			
	8.3 Regularity of the Sum of a Davenport Series			
9	Concluding Remarks and Open Problems			
9	9.1 Optimality of Lemma 2			
	9.2 Hecke's Functions			
	9.2 Frecke's Functions9.3 Spectrum of Singularities of Compensated Pure Jumps			
	Functions			

	9.4	<i>p</i> -Exponent	97
	9.5	Directional Regularity	98
10	Proof	of Theorem 1	99
11		of Theorems 2 and 3	103
	11.1	Locations of the Singularities	103
	11.2	Size and Large Intersection Properties of the Sets $L_a(\alpha)$,	
		Connection with the Duffin–Schaeffer and Catlin	
		Conjectures	104
	11.3	End of the Proof	110
Refe	erences		112
Dim	ension	s of Self-affine Sets: A Survey	115
		liconer	
1		uction	115
-	1.1	Basic Definitions	116
2	The A	ffinity Dimension	118
-	2.1	Cutting up Ellipses	118
	2.2	The Affinity Dimension	121
	2.3	Generic Results	122
	2.4	Sets with Dimension Attaining the Affinity Dimension	124
3		ffine Carpets	126
U	3.1	Bedford–McMullen Carpets	126
	3.2	Other Carpets	127
	3.3	Box-Like Sets	127
4		ffine Functions	129
5		d Topics	130
U	5.1	Multifractal Analysis of Measures on Self-affine Sets	130
	5.2	Nonlinear Analogues	131
Refe		······································	132
715 1	B.F. , 142	Provide Landon and T. Stadiation	125
		fractal Spectra of V-Statistics	135
1		uction	136
2		istics	138
23		ogical Entropy	139
4		of Theorem 1	141
5		ple: Shift Dynamics	143
-	•		151
		s of Measures Invariant Under the Geodesic Flow	153
-	rit Järv		100
1		uction	153
2		tions of Measures Invariant Under the Geodesic Flow	155
3		um Unique Ergodicity	156
-			159

Mul	tifract	al Tubes	161
Lars	Olsen		
1	Fracta	ıl Tubes	161
2	Multi	fractals	164
	2.1	Multifractal Spectra	164
	2.2	Renyi Dimensions	166
	2.3	The Multifractal Formalism	166
3	Multi	fractal Tubes	167
	3.1	Multifractal Tubes	167
	3.2	Multifractal Tubes of Self-similar Measures	169
	3.3	How Does One Prove Theorem 2 on the Asymptotic	
		Behaviour of Multifractal Tubes of Self-similar	
		Measures?	174
4	Multi	fractal Tube Measures	182
	4.1	Multifractal Tube Measures	182
	4.2	Multifractal Tube Measures of Self-similar Measures	184
Refe		S	190
		plicative Golden Mean Shift Has Infinite Hausdorff Measure	193
		s and Boris Solomyak	
1		luction	193
2		ninaries and the Scheme of the Proof	194
3		r Estimates of Hausdorff Measure	197
4		r Bound for Hausdorff Measure	204
Refe	erences	S	212
The	Law	of Iterated Logarithm and Equilibrium Measures	
		usdorff Measures for Dynamically Semi-regular	
		phic Functions	213
		Skorulski and Mariusz Urbański	
1		luction	213
2		ninaries	215
3		Law of Iterated Logarithm: Abstract Setting	219
4		Law of Iterated Logarithm: Meromorphic Functions	225
5		ibrium States Versus Hausdorff Measures	230
-	-	S	233
		utter-Like Sets with Graph-Directed Construction	235
She		Qing-Hui Liu, and Zhi-Ying Wen	
1		luction	235
	1.1	Cookie-Cutter and Cookie-Cutter-Like Constructions	236
	1.2	Graph-Directed Construction	237
	1.3	Cookie-Cutter-Like Sets with Graph-Directed	
		Construction (GCCL)	238

2	Main I	Results	240	
	2.1	Basic Assumption	240	
	2.2	Main Theorems	241	
3	Four F	Properties of GCCL	241	
	3.1	More on Coding Space and Other Notations	242	
	3.2	Proofs of Four Properties	242	
4	Proofs	of the Theorems	246	
	4.1	Proof of Theorem 1	246	
	4.2	Proof of Theorem 2	247	
	4.3	Proof of Theorem 3	250	
Refe	erences		253	
Dee	4 D	volonmente en Enertel Dreventies of Conscien		
		velopments on Fractal Properties of Gaussian ields	255	
	in Xiac		255	
1 m		, uction	255	
1		ian Random Fields	255	
Z	2.1		250	
		Space-Anisotropic Gaussian Random Fields	258	
	2.2	Time-Anisotropic Gaussian Random Fields	258	
2	2.3	Assumptions	259 261	
3	-	tic Results	261	
	3.1	Exact Modulus of Continuity and LIL	262	
	3.2	Chung's LIL and Modulus of Nondifferentiability	264	
	3.3	Regularity of Local Times	260	
4		1 Properties		
	4.1	Hausdorff Dimension Results	270	
	4.2	The Fourier Dimension and Salem Sets	272	
	4.3	Packing Dimension Results	273	
	4.4	Uniform Dimension Results	275	
	4.5	Exact Hausdorff Measure Functions	277	
	4.6	Exact Packing Measure Functions	279	
	4.7	Hitting Probabilities and Intersections of Gaussian	• • • •	
		Random Fields	280	
Refe	References 2			