Contents _____

Preface			xiii
1	Intr	oduction	1
	1.1	Basic Challenges in Risk Management	1
	1.2	Value at Risk	3
	1.3	Further Challenges in Risk Management	6
2	Арр	olied Linear Algebra for Risk Managers	11
	2.1	Vectors and Matrices	11
	2.2	Matrix Algebra in Practice	17
	2.3	Eigenvectors and Eigenvalues	21
	2.4	Positive Definite Matrices	24
3	Probability Theory for Risk Managers		27
	3.1	Univariate Theory	27
		3.1.1 Random variables	27
		3.1.2 Expectation	31
		3.1.3 Variance	32
	3.2	Multivariate Theory	33
		3.2.1 The joint distribution function	33
		3.2.2 The joint and marginal density functions	34
		3.2.3 The notion of independence	34
		3.2.4 The notion of conditional dependence	35
		3.2.5 Covariance and correlation	35
		3.2.6 The mean vector and covariance matrix	37
		3.2.7 Linear combinations of random variables	38
	3.3	The Normal Distribution	39
4	Optimization Tools		43
	4.1	Background Calculus	43
		4.1.1 Single-variable functions	43

	4.1.2 Multivariable functions	44
	4.2 Optimizing Functions	47
	4.2.1 Unconstrained quadratic functions	48
	4.2.2 Constrained quadratic functions	50
	4.3 Over-determined Linear Systems	52
	4.4 Linear Regression	54
5	Portfolio Theory I	63
	5.1 Measuring Returns	63
	5.1.1 A comparison of the standard and log returns	64
	5.2 Setting Up the Optimal Portfolio Problem	67
	5.3 Solving the Optimal Portfolio Problem	70
6	Portfolio Theory II	77
	6.1 The Two-Fund Investment Service	77
	6.2 A Mathematical Investigation of the Optimal Frontier	78
	6.2.1 The minimum variance portfolio	78
	6.2.2 Covariance of frontier portfolios	78
	6.2.3 Correlation with the minimum variance portfolio	79
	6.2.4 The zero-covariance portfolio	79
	6.3 A Geometrical Investigation of the Optimal Frontier	80
	6.3.1 Equation of a tangent to an efficient portfolio	80
	6.3.2 Locating the zero-covariance portfolio	82
	6.4 A Further Investigation of Covariance	83
	6.5 The Optimal Portfolio Problem Revisited	86
7	The Capital Asset Pricing Model (CAPM)	91
	7.1 Connecting the Portfolio Frontiers	91
	7.2 The Tangent Portfolio	94
	7.2.1 The market's supply of risky assets	94
	7.3 The CAPM	95
	7.4 Applications of CAPM	96
	7.4.1 Decomposing risk	97
8	Risk Factor Modelling	101
	8.1 General Factor Modelling	101
	8.2 Theoretical Properties of the Factor Model	102
	8.3 Models Based on Principal Component Analysis (PCA)	105
	8.3.1 PCA in two dimensions	106
	8.3.2 PCA in higher dimensions	112
9	The Value at Risk Concept	117
	9.1 A Framework for Value at Risk	117
	9.1.1 A motivating example	120
	9.1.2 Defining value at risk	121
	9.2 Investigating Value at Risk	122
	9.2.1 The suitability of value at risk to capital allocation	124

	9.3	Tail Value at Risk	126
	9.4	Spectral Risk Measures	127
10	Valu	e at Risk under a Normal Distribution	131
	10.1	Calculation of Value at Risk	131
	10.2	Calculation of Marginal Value at Risk	132
		Calculation of Tail Value at Risk	134
	10.4	Sub-additivity of Normal Value at Risk	135
11	Adv	anced Probability Theory for Risk Managers	137
	11.1	Moments of a Random Variable	137
	11.2	The Characteristic Function	140
		11.2.1 Dealing with the sum of several random variables	142
		11.2.2 Dealing with a scaling of a random variable	143
		11.2.3 Normally distributed random variables	143
	11.3	The Central Limit Theorem	145
	11.4	The Moment-Generating Function	147
	11.5	The Log-normal Distribution	148
12	A Sı	rvey of Useful Distribution Functions	151
	12.1	The Gamma Distribution	151
	12.2	The Chi-Squared Distribution	154
	12.3	The Non-central Chi-Squared Distribution	157
	12.4	The F-Distribution	161
	12.5	The <i>t</i> -Distribution	164
13	A C	rash Course on Financial Derivatives	169
	13.1	The Black-Scholes Pricing Formula	169
		13.1.1 A model for asset returns	170
		13.1.2 A second-order approximation	172
		13.1.3 The Black–Scholes formula	174
	13.2	Risk-Neutral Pricing	176
	13.3	A Sensitivity Analysis	179
		13.3.1 Asset price sensitivity: The delta and gamma measures	179
		13.3.2 Time decay sensitivity: The theta measure	182
		13.3.3 The remaining sensitivity measures	183
14		linear Value at Risk	185
		Linear Value at Risk Revisited	185
	14.2	Approximations for Non-linear Portfolios	186
		14.2.1 Delta approximation for the portfolio	188
		14.2.2 Gamma approximation for the portfolio	189
	14.3	Value at Risk for Derivative Portfolios	190
		14.3.1 Multi-factor delta approximation	190
		14.3.2 Single-factor gamma approximation	191
		14.3.3 Multi-factor gamma approximation	192

15	Time Series Analysis	197
	15.1 Stationary Processes	197
	15.1.1 Purely random processes	198
	15.1.2 White noise processes	198
	15.1.3 Random walk processes	199
	15.2 Moving Average Processes	199
	15.3 Auto-regressive Processes	201
	15.4 Auto-regressive Moving Average Processes	203
16	Maximum Likelihood Estimation	207
	16.1 Sample Mean and Variance	209
	16.2 On the Accuracy of Statistical Estimators	211
	16.2.1 Sample mean example	211
	16.2.2 Sample variance example	212
	16.3 The Appeal of the Maximum Likelihood Method	215
17	The Delta Method for Statistical Estimates	217
	17.1 Theoretical Framework	217
	17.2 Sample Variance	219
	17.3 Sample Skewness and Kurtosis	221
	17.3.1 Analysis of skewness	222
	17.3.2 Analysis of kurtosis	223
18	Hypothesis Testing	227
	18.1 The Testing Framework	227
	18.1.1 The null and alternative hypotheses	227
	18.1.2 Hypotheses: simple vs compound	228
	18.1.3 The acceptance and rejection regions	228
	18.1.4 Potential errors	229
	18.1.5 Controlling the testing errors/defining the acceptance region	229
	18.2 Testing Simple Hypotheses	230
	18.2.1 Testing the mean when the variance is known	231
	18.3 The Test Statistic	233
	18.3.1 Example: Testing the mean when the variance is unknown	234
	18.3.2 The <i>p</i> -value of a test statistic	236
	18.4 Testing Compound Hypotheses	237
19	Statistical Properties of Financial Losses	241
	19.1 Analysis of Sample Statistics	244
	19.2 The Empirical Density and Q-Q Plots	247
	19.3 The Auto-correlation Function	247
	19.4 The Volatility Plot	252
	19.5 The Stylized Facts	253
20	Modelling Volatility	255
	20.1 The RiskMetrics Model	256
	20.2 ARCH Models	258

Ind	331	
Ref	327	
	24.3 Testing the Independence of VaR Exceptions	323
	24.2 Testing the Proportion of VaR Exceptions	320
	24.1 Quantifying the Performance of VaR	319
24	Backtesting	319
	23.2 Corrections to the Normal Assumption	313
	23.1 The <i>t</i> -Distributed Assumption	309
23	Alternative Approaches to VaR	309
	22.3.2 Generating random numbers	302
	22.3.1 The Choleski algorithm	300
	22.3 Monte Carlo Simulation	299
	22.2 Historical Simulation	296
	22.1.1 Asymptotic behaviour	293
	22.1 Estimating the Quantile of a Distribution	291
22	Simulation Models	291
	21.4.2 The choice of threshold	287
	21.4.1 Parameter estimation	286
	21.4 Practical Issues	286
	21.3 Extreme Value at Risk	283
	21.2.1 The Fréchet domain of attraction	280
	21.1.7 The extreme value theorem 21.2 Domains of Attraction	277
	21.1.6 Example 5: Cauchy distributed losses 21.1.7 The extreme value theorem	276 277
	21.1.5 Example 4: Uniformly distributed losses	275
	21.1.4 Example 3: Pareto distributed losses	275
	21.1.3 Example 2: Normally distributed losses	274
	21.1.2 Example 1: Exponentially distributed losses	273
	21.1.1 A naive attempt	273
	21.1 The Mathematics of Extreme Events	271
21	Extreme Value Theory	271
	20.4 Exponential GARCH	269
	20.3.3 Summary	269
	20.3.2 The RiskMetrics model revisited	268
	20.3.1 The GARCH(1, 1) volatility model	265
	20.3 GARCH Models	260
	20.2.1 The ARCH(1) volatility model	260