Detailed Contents

Chapter 1: The Biology and Genetics of Cells and Organisms

1.1 1.2	Mendel establishes the basic rules of genetics Mendelian genetics helps to explain Darwinian evolution	2 4
1.3	Mendelian genetics governs how both genes and chromosomes behave	7
1.4	Chromosomes are altered in most types of cancer cells	10
1.5	Mutations causing cancer occur in both the germ line and the soma	11
1.6	Genotype embodied in DNA sequences creates phenotype through proteins	14
1.7	Gene expression patterns also control phenotype	19
1.8	Histone modification and transcription factors control	
1.9	gene expression Heritable gene expression is controlled through	21
	additional mechanisms	24
1.10	Unconventional RNA molecules also affect the expression of genes	25
1.11	Metazoa are formed from components conserved over	25
	vast evolutionary time periods	27
1.12	Gene cloning techniques revolutionized the study of	
	normal and malignant cells	28
Additio	onal reading	29
	-	
Chapt	er 2: The Nature of Cancer	31
2.1	Tumors arise from normal tissues	32
2.2	Tumors arise from many specialized cell types	
	throughout the body	34
2.3	Some types of tumors do not fit into the major	
	classifications	40
2.4	Cancers seem to develop progressively	45
2.5	Tumors are monoclonal growths	50
2.6	Cancer cells exhibit an altered energy metabolism	53
2.7	Cancers occur with vastly different frequencies in	55
2.1		55
2.8	different human populations	55
2.0	The risks of cancers often seem to be increased by	50
2.0	assignable influences including lifestyle	58
2.9	Specific chemical agents can induce cancer	59
2.10	Both physical and chemical carcinogens act as mutagens	60
2.11	Mutagens may be responsible for some human cancers	64
2.12	Synopsis and prospects	66
Key con	ncepts	68
	nt questions	69
Additio	onal reading	69
Chapt	er 3: Tumor Viruses	71
3.1	Peyton Rous discovers a chicken sarcoma virus	72
3.2	Rous sarcoma virus is discovered to transform infected	
	cells in culture	75
3.3	The continued presence of RSV is needed to maintain	77
3.4	transformation	//
J. 4	Viruses containing DNA molecules are also able to induce cancer	79

3.5	Tumor viruses induce multiple changes in cell phenotyp	be op
3.6	including acquisition of tumorigenicity Tumor virus genomes persist in virus-transformed cells	82
	by becoming part of host-cell DNA	83
3.7	Retroviral genomes become integrated into the chromosomes of infected cells	87
3.8	A version of the src gene carried by RSV is also present	
3.9	in uninfected cells RSV exploits a kidnapped cellular gene to transform	89
	cells	91
3.10	The vertebrate genome carries a large group of proto- oncogenes	93
3.11	Slowly transforming retroviruses activate proto-	
	oncogenes by inserting their genomes adjacent to	0.4
0.40	these cellular genes	94
3.12	Some retroviruses naturally carry oncogenes	97
3.13 V	Synopsis and prospects	99 101
	oncepts	101
	sht questions	102
Addit	ional reading	102
Chap	ter 4: Cellular Oncogenes	103
4.1	Can cancers be triggered by the activation of	
	endogenous retroviruses?	104
4.2	Transfection of DNA provides a strategy for detecting nonviral oncogenes	105
4.3	Oncogenes discovered in human tumor cell lines are	
	related to those carried by transforming retroviruses	108
4.4	Proto-oncogenes can be activated by genetic changes	
	affecting either protein expression or structure	113
4.5	Variations on a theme: the <i>myc</i> oncogene can arise	
	via at least three additional distinct mechanisms	117
4.6	A diverse array of structural changes in proteins can	
	also lead to oncogene activation	124
4.7	Synopsis and prospects	127
	oncepts	128
	th questions	130
	ional reading	130
Chap	ter 5: Growth Factors, Receptors, and Cancer	131
5.1	Normal metazoan cells control each other's lives	133
5.2	The Src protein functions as a tyrosine kinase	135
5.3	The EGF receptor functions as a tyrosine kinase	138
5.4	An altered growth factor receptor can function as an	
	oncoprotein	141
5.5	A growth factor gene can become an oncogene:	
	the case of sis	144
5.6	Transphosphorylation underlies the operations of	1 11
	receptor tyrosine kinases	146
5.7	Yet other types of receptors enable mammalian cells	140
	to communicate with their environment	153
5.8	Nuclear receptors sense the presence of low-molecular-	
.0		
5.9	weight lipophilic ligands	159
1.7	Integrin receptors sense association between the cell and the extracellular matrix	161
		161

Detailed contents

5.10 5.11	The Ras protein, an apparent component of the downstream signaling cascade, functions as a G protein Synopsis and prospects	165 169
Key cor		172
	it questions	174
Additic	onal reading	174
~.		
	er 6: Cytoplasmic Signaling Circuitry Programs	175
Many	of the Traits of Cancer	175
6.1	A signaling pathway reaches from the cell surface into	177
6.2	the nucleus The Ras protein stands in the middle of a complex	177
0.2	signaling cascade	180
6.3	Tyrosine phosphorylation controls the location and thereby the actions of many cytoplasmic signaling	100
6.4	proteins SH2 and SH3 groups explain how growth factor	182
6.5	SH2 and SH3 groups explain how growth factor receptors activate Ras and acquire signaling specificity Ras-regulated signaling pathways: A cascade of kinases	188
	forms one of three important signaling pathways	
	downstream of Ras	189
6.6	Ras-regulated signaling pathways: a second downstream pathway controls inositol lipids and the	
	Akt/PKB kinase	193
6.7	Ras-regulated signaling pathways: a third downstream	
	pathway acts through Ral, a distant cousin of Ras	201
6.8	The Jak–STAT pathway allows signals to be	
	transmitted from the plasma membrane directly to the nucleus	202
6.9	Cell adhesion receptors emit signals that converge	
	with those released by growth factor receptors	204
6.10	The Wnt-β-catenin pathway contributes to cell	204
6.11	proliferation G-protein–coupled receptors can also drive normal	206
	and neoplastic proliferation	209
6.12	Four additional "dual-address" signaling pathways	
	contribute in various ways to normal and neoplastic	212
6.13	proliferation Well-designed signaling circuits require both negative	212
0110	and positive feedback controls	216
	Synopsis and prospects	217
Key con	ncepts	227
Additic	nt questions onal reading	228 228
nuana	marreading	440
Chapt	er 7: Tumor Suppressor Genes	231
7.1	Cell fusion experiments indicate that the cancer	
7)	phenotype is recessive	232
7.2	The recessive nature of the cancer cell phenotype requires a genetic explanation	234
7.3	The retinoblastoma tumor provides a solution to the	234
	genetic puzzle of tumor suppressor genes	235
7.4	Incipient cancer cells invent ways to eliminate wild-	220
7.5	type copies of tumor suppressor genes The <i>Rb</i> gene often undergoes loss of heterozygosity	238
. 15	in tumors	241
7.6	Loss-of-heterozygosity events can be used to find	
77	tumor suppressor genes	243
7.7	Many familial cancers can be explained by inheritance of mutant tumor suppressor genes	240
7.8	Promoter methylation represents an important	248
-	mechanism for inactivating tumor suppressor genes	249
7.9	Tumor suppressor genes and proteins function in	
7.10	diverse ways The NF1 protein acts as a negative regulator of Ras	254
		255

7.11 7.12	Apc facilitates egress of cells from colonic crypts Von Hippel–Lindau disease: pVHL modulates the	259
	hypoxic response	265
7.13	Synopsis and prospects	268
Key c	oncepts	272
Thoug	the questions	273
Addit	ional reading	273
Chap 8.1	oter 8: pRb and Control of the Cell Cycle Clock Cell growth and division is coordinated by a complex	275
	array of regulators	276
8.2	Cells make decisions about growth and quiescence during a specific period in the G1 phase	281
8.3	Cyclins and cyclin-dependent kinases constitute the	
	core components of the cell cycle clock	283
8.4	Cyclin–CDK complexes are also regulated by CDK	

8.4	Cyclin–CDK complexes are also regulated by CDK	
	inhibitors	288
8.5	Viral oncoproteins reveal how pRb blocks advance	
	through the cell cycle	294
8.6	pRb is deployed by the cell cycle clock to serve as a	
	guardian of the restriction-point gate	298
8.7	E2F transcription factors enable pRb to implement	
	growth-versus-quiescence decisions	299
8.8	A variety of mitogenic signaling pathways control	
	the phosphorylation state of pRb	304
8.9	The Myc protein governs decisions to proliferate or	
	differentiate	306
8.10	TGF- β prevents phosphorylation of pRb and thereby	
	blocks cell cycle progression	311
8.11	pRb function and the controls of differentiation are	
	closely linked	314
8.12	Control of pRb function is perturbed in most if not	
	all human cancers	318
8.13	Synopsis and prospects	323
Key co		327
	nt questions	328
	onal reading	329
	0	

Chapter 9: p53 and Apoptosis: Master Guardian and Executioner

331

9.1	Papovaviruses lead to the discovery of p53	332
9.2	p53 is discovered to be a tumor suppressor gene	334
9.3	Mutant versions of p53 interfere with normal p53	
	function	335
9.4	p53 protein molecules usually have short lifetimes	338
9.5	A variety of signals cause p53 induction	339
9.6	DNA damage and deregulated growth signals cause	
	p53 stabilization	341
9.7	Mdm2 destroys its own creator	342
9.8	ARF and p53-mediated apoptosis protect against	
	cancer by monitoring intracellular signaling	348
9.9	p53 functions as a transcription factor that halts cell	
	cycle advance in response to DNA damage and	
	attempts to aid in the repair process	352
9.10	p53 often ushers in the apoptotic death program	355
9.11	p53 inactivation provides advantage to incipient	
	cancer cells at a number of steps in tumor progression	359
9.12	Inherited mutant alleles affecting the p53 pathway	
	predispose one to a variety of tumors	360
9.13	Apoptosis is a complex program that often depends	
	on mitochondria	361
9.14	Both intrinsic and extrinsic apoptotic programs can	
	lead to cell death	371
9.15	Cancer cells invent numerous ways to inactivate some	
	or all of the apoptotic machinery	376
9.16	Necrosis and autophagy: two additional forks in the	
	road of tumor progression	379

Detailed contents

9.17 Synopsis and prospects	381
Key concepts	387
Thought questions	388
Additional reading	

391

Chapter 10: Eternal Life: Cell Immortalization and Tumorigenesis

	•	
10.1	Normal cell populations register the number of cell generations separating them from their ancestors in	
	the early embryo	392
10.2	Cancer cells need to become immortal in order to form	072
	tumors	394
10.3	Cell-physiologic stresses impose a limitation on	
	replication	398
10.4	The proliferation of cultured cells is also limited by the	
	telomeres of their chromosomes	404
10.5	Telomeres are complex molecular structures that are not	t
	easily replicated	409
10.6	Incipient cancer cells can escape crisis by expressing	
	telomerase	412
10.7	Telomerase plays a key role in the proliferation of	
	human cancer cells	417
10.8	Some immortalized cells can maintain telomeres	
100	without telomerase	419
10.9	Telomeres play different roles in the cells of laboratory	100
40.40	mice and in human cells	423
10.10	Telomerase-negative mice show both decreased and	105
10.11	increased cancer susceptibility	425
10.11	The mechanisms underlying cancer pathogenesis in	
	telomerase-negative mice may also operate during the	420
10.12	development of human tumors	429 433
	Synopsis and prospects	435
Key concepts Thought questions		437
2 IUUIII	Shin routing	437

Chapter 11: Multi-Step Tumorigenesis 439

11.1	Most human cancers develop over many decades of	
	time	440
11.2	Histopathology provides evidence of multi-step tumor	
	formation	442
11.3	Cells accumulate genetic and epigenetic alterations	4.40
11.4	as tumor progression proceeds	449
11.4	Multi-step tumor progression helps to explain familial	453
11.5	polyposis and field cancerization Cancer development seems to follow the rules of	455
11.5	Darwinian evolution	455
11.6	Tumor stem cells further complicate the Darwinian	-55
	model of clonal succession and tumor progression	458
11.7	A linear path of clonal succession oversimplifies the	
	reality of cancer: intra-tumor heterogeneity	463
11.8	The Darwinian model of tumor development is difficult	
	to validate experimentally	467
11.9	Multiple lines of evidence reveal that normal cells are	
	resistant to transformation by a single mutated gene	468
11.10	Transformation usually requires collaboration between	
	two or more mutant genes	470
11.11	Transgenic mice provide models of oncogene	
11.10	collaboration and multi-step cell transformation	474
11.12	Human cells are constructed to be highly resistant	475
11 1 2	to immortalization and transformation	475
11.13	Nonmutagenic agents, including those favoring	
	cell proliferation, make important contributions to tumorigenesis	480
11.14	Toxic and mitogenic agents can act as human tumor	100
* T ' T -4	promoters	484
	Promotero	

11.15	Chronic inflammation often serves to promote tumor	
	progression in mice and humans	486
11.16	Inflammation-dependent tumor promotion operates	
	through defined signaling pathways	490
11.17	Tumor promotion is likely to be a critical determinant	
	of the rate of tumor progression in many human tissues	498
11.18	Synopsis and prospects	501
Key co		506
Though	nt questions	507
Additio	onal reading	508

Chapter 12: Maintenance of Genomic Integrity and the Development of Cancer 511 12.1 Tissues are organized to minimize the progressive accumulation of mutations 512 12.2 Stem cells may or may not be targets of the mutagenesis that leads to cancer 515 12.3 Apoptosis, drug pumps, and DNA replication mechanisms offer tissues a way to minimize the accumulation of mutant stem cells 517 12.4 Cell genomes are threatened by errors made during DNA replication 519 12.5 Cell genomes are under constant attack from endogenous biochemical processes 523 12.6 Cell genomes are under occasional attack from exogenous mutagens and their metabolites 527 12.7 Cells deploy a variety of defenses to protect DNA molecules from attack by mutagens 535 Repair enzymes fix DNA that has been altered by 12.8 mutagens 538 12.9 Inherited defects in nucleotide-excision repair, base-excision repair, and mismatch repair lead to specific cancer susceptibility syndromes 544 12.10 A variety of other DNA repair defects confer increased cancer susceptibility through poorly understood 549 mechanisms The karyotype of cancer cells is often changed through 12.11 alterations in chromosome structure 555 12.12 The karyotype of cancer cells is often changed through 558 alterations in chromosome number 12.13 Synopsis and prospects 564 Key concepts 572 573 Thought questions 574 Additional reading

Chapter 13 Dialogue Replaces Monologue: Heterotypic Interactions and the Biology of Angiogenesis 577 13.1 Normal and neoplastic epithelial tissues are formed from interdependent cell types 579 The cells forming cancer cell lines develop without 13.2 heterotypic interactions and deviate from the behavior of cells within human tumors 585 13.3 Tumors resemble wounded tissues that do not heal 587 Experiments directly demonstrate that stromal cells 13.4 are active contributors to tumorigenesis 600 13.5 Macrophages and myeloid cells play important roles 604 in activating the tumor-associated stroma 13.6 Endothelial cells and the vessels that they form ensure 607 tumors adequate access to the circulation 13.7 Tripping the angiogenic switch is essential for tumor 615 expansion 13.8 The angiogenic switch initiates a highly complex process 619 13.9 Angiogenesis is normally suppressed by physiologic inhibitors 622 13.10 Anti-angiogenesis therapies can be employed to treat cancer 626

Detailed contents

13.11	Synopsis and prospects	634
Key con		638
	at questions	639
Additic	onal reading	639
Chapt	er 14: Moving Out: Invasion and Metastasis	641
14.1	Travel of cancer cells from a primary tumor to a site	
	of potential metastasis depends on a series of complex	
	biological steps	643
14.2	Colonization represents the most complex and	652
142	challenging step of the invasion-metastasis cascade	652
14.3	The epithelial-mesenchymal transition and associated loss of E-cadherin expression enable carcinoma cells	
	to become invasive	657
14.4	Epithelial-mesenchymal transitions are often induced	007
1	by contextual signals	662
14.5	Stromal cells contribute to the induction of	
	invasiveness	669
14.6	EMTs are programmed by transcription factors that	(T A
	orchestrate key steps of embryogenesis	672
14.7	EMT-inducing transcription factors also enable	677
14.8	entrance into the stem cell state EMT-inducing TFs help drive malignant progression	680
14.8	Extracellular proteases play key roles in invasiveness	685
14.10	Small Ras-like GTPases control cellular processes	005
1	such as adhesion, cell shape, and cell motility	689
14.11	Metastasizing cells can use lymphatic vessels to	
	disperse from the primary tumor	695
14.12	A variety of factors govern the organ sites in which	
	disseminated cancer cells form metastases	699
14.13	Metastasis to bone requires the subversion of	702
1111	osteoblasts and osteoclasts	703
14.14	Metastasis suppressor genes contribute to regulating	709
14.15	the metastatic phenotype Occult micrometastases threaten the long-term	709
17.15	survival of cancer patients	711
14.16	Synopsis and prospects	713
	oncepts	719
	ht questions	720
Additi	onal reading	721
Chapt	ter 15: Crowd Control: Tumor Immunology	
and Îr	nmunotherapy	723
	1.2	
15.1	The immune system functions to destroy foreign	724
15.2	invaders and abnormal cells in the body's tissues The adaptive immune response leads to antibody	124
13.4	production	726
15.3	Another adaptive immune response leads to the	720
2010	formation of cytotoxic cells	729
15.4	The innate immune response does not require prior	
	sensitization	736
15.5	The need to distinguish self from non-self results in	
	immune tolerance	736
15.6	Regulatory T cells are able to suppress major	
45 5	components of the adaptive immune response	737
15.7	The immunosurveillance theory is born and then	
15.8	suffers major setbacks	739
15.8	Use of genetically altered mice leads to a resurrection	740
15.9	of the immunosurveillance theory	742
15.7	The human immune system plays a critical role in warding off various types of human cancer	745
15.10	Subtle differences between normal and neoplastic	נד ו
	tissues may allow the immune system to distinguish	
	between them	751
15.11	Tumor transplantation antigens often provoke potent	
	immune responses	756
15.12	Tumor-associated transplantation antigens may	
	also evoke anti-tumor immunity	758

15.13	Cancer cells can evade immune detection by	7/4
15 14	suppressing cell-surface display of tumor antigens	761
15.14	Cancer cells protect themselves from destruction by	765
15.15	NK cells and macrophages Tumor cells launch counterattacks on immunocytes	769
15.16	Cancer cells become intrinsically resistant to various	707
15.10	forms of killing used by the immune system	773
15.17	Cancer cells attract regulatory T cells to fend off	110
10117	attacks by other lymphocytes	774
15.18	Passive immunization with monoclonal antibodies	
	can be used to kill breast cancer cells	778
15.19	Passive immunization with antibody can also be	
	used to treat B-cell tumors	781
15.20	Transfer of foreign immunocytes can lead to cures	
	of certain hematopoietic malignancies	785
15.21	Patients' immune systems can be mobilized to	
	attack their tumors	786
15.22	Synopsis and prospects	791
	oncepts	793
	ht questions	795
Addit	ional reading	795
Chap	ter 16: The Rational Treatment of Cancer	797
•		
16.1	The development and clinical use of effective	800
16.2	therapies will depend on accurate diagnosis of disease	000
10.4	Surgery, radiotherapy, and chemotherapy are the major pillars on which current cancer therapies rest	806
16.3	Differentiation, apoptosis, and cell cycle checkpoints	000
10.5	can be exploited to kill cancer cells	813
16.4	Functional considerations dictate that only a subset	010
10.1	of the defective proteins in cancer cells are attractive	
	targets for drug development	815
16.5	The biochemistry of proteins also determines whether	
	they are attractive targets for intervention	818
16.6	Pharmaceutical chemists can generate and explore	
	the biochemical properties of a wide array of potential	
	drugs	822
16.7	Drug candidates must be tested on cell models as an	
	initial measurement of their utility in whole	
	organisms	825
16.8	Studies of a drug's action in laboratory animals are	00/
1(0	an essential part of pre-clinical testing	826
16.9	Promising candidate drugs are subjected to rigorous	020
1(10	clinical tests in Phase I trials in humans	829
16.10	Phase II and III trials provide credible indications	831
16.11	of clinical efficacy Tumors often develop resistance to initially effective	031
10.11		833
16.12	therapy Gleevec paved the way for the development of many	000
10.12	other highly targeted compounds	834
16.13	EGF receptor antagonists may be useful for treating	00.
10110	a wide variety of tumor types	844
16.14	Proteasome inhibitors yield unexpected therapeutic	
	benefit	850
16.15	A sheep teratogen may be useful as a highly potent	
	anti-cancer drug	855
16.16	mTOR, a master regulator of cell physiology,	
	represents an attractive target for anti-cancer therapy	861
16.17	B-Raf discoveries have led to inroads into the	
	melanoma problem	864
16.18	Synopsis and prospects: challenges and opportunities	
	on the road ahead	866
	oncepts	874
	ht questions	875
Additi	onal reading	875