CONTENTS

Preface			xvi
Chapter 1	Int	roduction	1
	1.1	Elements of a Digital Communication System	1
	1.2	Communication Channels and Their Characteristics	3
	1.3	Mathematical Models for Communication Channels	10
	1.4	A Historical Perspective in the Development of	
		Digital Communications	12
	1.5	Overview of the Book	15
	1.6	Bibliographical Notes and References	15
Chapter 2	Det	terministic and Random Signal Analysis	17
	2.1	Bandpass and Lowpass Signal Representation	18
		2.1–1 Bandpass and Lowpass Signals / 2.1–2 Lowpass	
		Equivalent of Bandpass Signals / 2.1–3 Energy	
		Considerations / 2.1–4 Lowpass Equivalent of a	
		Bandpass System	
	2.2	Signal Space Representation of Waveforms	28
		2.2–1 Vector Space Concepts / 2.2–2 Signal Space	
		Concepts / 2.2–3 Orthogonal Expansions of Signals /	
		2.2–4 Gram-Schmidt Procedure	
	2.3	Some Useful Random Variables	40
	2.4	Bounds on Tail Probabilities	56
	2.5	Limit Theorems for Sums of Random Variables	63
	2.6	Complex Random Variables	63
		2.6–1 Complex Random Vectors	
	2.7	Random Processes	66
		2.7–1 Wide-Sense Stationary Random Processes / 2.7–2	
		Cyclostationary Random Processes / 2.7-3 Proper and	
		Circular Random Processes / 2.7–4 Markov Chains	
	2.8	Series Expansion of Random Processes	74
		2.8–1 Sampling Theorem for Band-Limited Random	
		Processes / 2.8–2 The Karhunen-Loève Expansion	
	2.9	Bandpass and Lowpass Random Processes	78

Contents

	2.10	Bibliographical Notes and References	82
		Problems	82
Ch	D!	tal Madulation Cohomoa	07
Chapter 5	Digi	tai modulation Schemes	95
	3.1	Representation of Digitally Modulated Signals	95
	3.2	Memoryless Modulation Methods	97
		3.2–1 Pulse Amplitude Modulation (PAM) / 3.2–2 Phase	
		Modulation / 3.2–3 Quadrature Amplitude	
		Modulation / 3.2–4 Multidimensional Signaling	
	3.3	Signaling Schemes with Memory	114
		3.3–1 Continuous-Phase Frequency-Shift Keying	
		(CPFSK) / 3.3–2 Continuous-Phase Modulation (CPM)	
	3.4	Power Spectrum of Digitally Modulated Signals	131
		3.4 I Power Spectral Density of a Digitally Modulated Signal	
		with Memory / 3.4–2 Power Spectral Density of Linearly	
		Modulated Signals / 3.4–3 Power Spectral Density of	
		Digitally Modulated Signals with Finite Memory 7 3.4–4	
		Power Spectral Density of Moaulation Schemes with a Markov	
		Structure / 3.4–5 Power Spectral Densities of CPFSK and	
	35	CFM Signals Piblicgraphical Notes and Pafaranaas	148
	5.5	Problems	140
		Tioblems	140
Chapter 4	Opt	imum Receivers for AWGN Channels	160
Chapter 4	Opt	imum Receivers for AWGN Channels	160
Chapter 4	Opt 4.1	imum Receivers for AWGN Channels Waveform and Vector Channel Models	160 160
Chapter 4	Opt 4.1	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.11 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels	160 160
Chapter 4	Opt 4.1 4.2	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN	160 160 167
Chapter 4	Opt 4.1 4.2	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for	160 160 167
Chapter 4	Opt 4.1 4.2	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of	160 160 167
Chapter 4	Opt 4.1 4.2	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection	160 160 167
Chapter 4	Opt 4.1 4.2 4.3	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited	160 160 167
Chapter 4	Opt 4.1 4.2 4.3	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling	160 160 167 188
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1-1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2-1 Optimal Detection for the Vector AWGN Channel / 4.2-2 Implementation of the Optimal Receiver for AWGN Channels / 4.2-3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3-1 Optimal Detection and Error Probability for ASK or 	160 160 167 188
Chapter 4	Opt 4.1 4.2 4.3	imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error	160 160 167 188
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error Probability for PSK Signaling / 4.3–3 Optimal Detection and 	160 160 167 188
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error Probability for PSK Signaling / 4.3–3 Optimal Detection and Error Probability for QAM Signaling / 4.3–4 Demodulation 	160 160 167 188
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error Probability for PSK Signaling / 4.3–3 Optimal Detection and Error Probability for QAM Signaling / 4.3–4 Demodulation and Detection 	160 160 167 188
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error Probability for PSK Signaling / 4.3–3 Optimal Detection and Error Probability for QAM Signaling / 4.3–4 Demodulation and Detection Optimal Detection and Error Probability for Power-Limited 	160 160 167 188
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error Probability for PSK Signaling / 4.3–3 Optimal Detection and Error Probability for QAM Signaling / 4.3–4 Demodulation and Detection Optimal Detection and Error Probability for Power-Limited 	 160 167 188 203
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1-1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2-1 Optimal Detection for the Vector AWGN Channel / 4.2-2 Implementation of the Optimal Receiver for AWGN Channels / 4.2-3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3-1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3-2 Optimal Detection and Error Probability for PSK Signaling / 4.3-3 Optimal Detection and Error Probability for QAM Signaling / 4.3-4 Demodulation and Detection Optimal Detection and Error Probability for Power-Limited Signaling 4.4-1 Optimal Detection and Error Probability for Orthogonal 	 160 167 188 203
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error Probability for PSK Signaling / 4.3–3 Optimal Detection and Error Probability for QAM Signaling / 4.3–4 Demodulation and Detection Optimal Detection and Error Probability for Power-Limited Signaling 4.4–1 Optimal Detection and Error Probability for Orthogonal Signaling / 4.4–2 Optimal Detection and Error Probability for Orthogonal 	 160 167 188 203
Chapter 4	Opt 4.1 4.2 4.3	 imum Receivers for AWGN Channels Waveform and Vector Channel Models 4.1–1 Optimal Detection for a General Vector Channel Waveform and Vector AWGN Channels 4.2–1 Optimal Detection for the Vector AWGN Channel / 4.2–2 Implementation of the Optimal Receiver for AWGN Channels / 4.2–3 A Union Bound on the Probability of Error of Maximum Likelihood Detection Optimal Detection and Error Probability for Band-Limited Signaling 4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling / 4.3–2 Optimal Detection and Error Probability for PSK Signaling / 4.3–3 Optimal Detection and Error Probability for QAM Signaling / 4.3–4 Demodulation and Detection Optimal Detection and Error Probability for Power-Limited Signaling 4.4–1 Optimal Detection and Error Probability for Orthogonal Signaling / 4.4–2 Optimal Detection and Error Probability for Orthogonal Signaling / 4.4–2 Optimal Detection and Error Probability for Orthogonal 	 160 167 188 203

331

	4.5	Optimal Detection in Presence of Uncertainty:	
		Noncoherent Detection	210
		4.5–1 Noncoherent Detection of Carrier Modulated	
		Signals / 4.5–2 Optimal Noncoherent Detection of FSK	
		Modulated Signals / 4.5–3 Error Probability of Orthogonal	
		Signaling with Noncoherent Detection / 4.5-4 Probability of	
		Error for Envelope Detection of Correlated Binary	
		Signals / 4.5-5 Differential PSK (DPSK)	
	4.6	A Comparison of Digital Signaling Methods	226
		4.6–1 Bandwidth and Dimensionality	
	4.7	Lattices and Constellations Based on Lattices	230
		4.7–1 An Introduction to Lattices / 4.7–2 Signal	
		Constellations from Lattices	
	4.8	Detection of Signaling Schemes with Memory	242
		4.8–1 The Maximum Likelihood Sequence Detector	
	4.9	Optimum Receiver for CPM Signals	246
		4.9–1 Optimum Demodulation and Detection of CPM /	
		4.9–2 Performance of CPM Signals / 4.9–3 Suboptimum	
		Demodulation and Detection of CPM Signals	
	4.10	Performance Analysis for Wireline and Radio	
		Communication Systems	259
		4.10–1 Regenerative Repeaters / 4.10–2 Link Budget	
		Analysis in Radio Communication Systems	
	4.11	Bibliographical Notes and References	265
		Problems	266
Chapter 5	Car	rier and Symbol Synchronization	290
	5.1	Signal Parameter Estimation	290
		5.1–1 The Likelihood Function / 5.1–2 Carrier Recovery and	
		Symbol Synchronization in Signal Demodulation	
	5.2	Carrier Phase Estimation	295
		5.2–1 Maximum-Likelihood Carrier Phase Estimation /	
		5.2–2 The Phase-Locked Loop / 5.2–3 Effect of Additive	
		Noise on the Phase Estimate / 5.2-4 Decision-Directed	
		Loops / 5.2–5 Non-Decision-Directed Loops	
	5.3	Symbol Timing Estimation	315
		5.3–1 Maximum-Likelihood Timing Estimation /	
		5.3–2 Non-Decision-Directed Timing Estimation	
	5.4	Joint Estimation of Carrier Phase and Symbol Timing	321
	5.5	Performance Characteristics of ML Estimators	323
	5.6	Bibliographical Notes and References	326
		Problems	327
Chantor 6	4 1	Introduction to Information Theorem	
Unapier 0	AILI	пи очисной со тногтаций т пеогу	330

Mathematical Models for Information Sources

6.1

Contents

	62	A Logarithmic Measure of Information	332
	63	Lossless Coding of Information Sources	335
	0.5	63-1 The Lossless Source Coding Theorem / 63-2 Lossless	255
		Coding Algorithms	
	6.4	Lossy Data Compression	348
	••••	6.4–1 Entropy and Mutual Information for Continuous	2.10
		Random Variables / 6.4–2 The Rate Distortion Function	
	6.5	Channel Models and Channel Capacity	354
	0.0	6 5–1 Channel Models / 6 5–2 Channel Capacity	22.
	6.6	Achieving Channel Capacity with Orthogonal Signals	367
	6.7	The Channel Reliability Function	369
	6.8	The Channel Cutoff Rate	371
	0.0	6 8–1 Rhattacharyya and Chernov Rounds / 6 8–2 Random	271
		Coding	
	69	Bibliographical Notes and References	380
	0.7	Problems	381
		Tobellis	501
Chanter 7	Lin	ear Block Codes	400
Chapter /			400
	7.1	Basic Definitions	401
		7.1–1 The Structure of Finite Fields / 7.1–2 Vector Spaces	
	7.2	General Properties of Linear Block Codes	411
		7.2–1 Generator and Parity Check Matrices / 7.2–2 Weight	
		and Distance for Linear Block Codes / 7.2–3 The Weight	
		Distribution Polynomial / 7.2–4 Error Probability of Linear	
		Block Codes	
	7.3	Some Specific Linear Block Codes	420
		7.3–1 Repetition Codes / 7.3–2 Hamming Codes /	
		7.3–3 Maximum-Length Codes / 7.3–4 Reed-Muller	
		Codes / 7.3–5 Hadamard Codes / 7.3–6 Golay Codes	
	7.4	Optimum Soft Decision Decoding of Linear	
		Block Codes	424
	7.5	Hard Decision Decoding of Linear Block Codes	428
		7.5–1 Error Detection and Error Correction Capability of	
		Block Codes / 7.5–2 Block and Bit Error Probability for Hard	
		Decision Decoding	
	7.6	Comparison of Performance between Hard Decision and	
		Soft Decision Decoding	436
	7.7	Bounds on Minimum Distance of Linear Block Codes	440
		77-1 Singleton Bound / 77-2 Hamming Bound /	
		77-3 Plotkin Bound / 77-4 Flias Bound / 77-5	
		McFliece-Rodemich-Rumsey-Welch (MRRW) Round /	
		77_6 Varshamov_Gilbert Round	
	79	Modified Linear Block Codes	115
	1.0	7.8.1 Shortoning and Langthoring (7.8.) Duraturing and	443
		7.0-1 Shortening and Lengthening / 7.0-2 Puncturing and	
		Extending 7 7.8–3 Expurgation and Augmentation	

Contents

	7.9	Cyclic Codes 7.9–1 Cyclic Codes — Definition and Basic Properties / 7.9–2 Systematic Cyclic Codes / 7.9–3 Encoders for Cyclic Codes / 7.9–4 Decoding Cyclic Codes / 7.9–5 Examples of Cyclic Codes	447
	7.10	Bose-Chaudhuri-Hocquenghem (BCH) Codes 7.10–1 The Structure of BCH Codes / 7.10–2 Decoding BCH Codes	463
	7.11	Reed-Solomon Codes	471
	7.12	Coding for Channels with Burst Errors	475
	7.13	Combining Codes	477
		7.13–1 Product Codes / 7.13–2 Concatenated Codes	
	7.14	Bibliographical Notes and References	482
		Problems	482
Chapter 8	Tre	llis and Graph Based Codes	491
	8.1	The Structure of Convolutional Codes	491
		8.1–1 Tree, Trellis, and State Diagrams / 8.1–2 The Transfer	
		Function of a Convolutional Code / 8.1–3 Systematic,	
		Nonrecursive, and Recursive Convolutional Codes /	
		8.1–4 The Inverse of a Convolutional Encoder and	
		Catastrophic Codes	
	8.2	Decoding of Convolutional Codes	510
		8.2–1 Maximum-Likelihood Decoding of Convolutional	
		Codes — The Viterbi Algorithm / 8.2–2 Probability of	
		Error for Maximum-Likelihood Decoding of Convolutional	
		Codes	
	8.3	Distance Properties of Binary Convolutional Codes	516
	8.4	Punctured Convolutional Codes	516
		8.4–1 Rate-Compatible Punctured Convolutional Codes	
	8.5	Other Decoding Algorithms for Convolutional Codes	525
	8.6	Practical Considerations in the Application of	
		Convolutional Codes	532
	8.7	Nonbinary Dual-k Codes and Concatenated Codes	537
	8.8	Maximum a Posteriori Decoding of Convolutional	
		Codes — The BCJR Algorithm	541
	8.9	Turbo Codes and Iterative Decoding	548
		8.9–1 Performance Bounds for Turbo Codes / 8.9–2 Iterative	
		Decoding for Turbo Codes / 8.9–3 EXIT Chart Study of	
		Iterative Decoding	
	8.10	Factor Graphs and the Sum-Product Algorithm	558
		8.10–1 Tanner Graphs / 8.10–2 Factor Graphs / 8.10–3 The	
		Sum-Product Algorithm / 8.10-4 MAP Decoding Using the	
		Sum-Product Algorithm	
		÷	

Contents

	8.11	Low Density Parity Check Codes	568
	0 1 1	8.11-1 Decoding LDPC Codes	
	0.12	Coding for Bandwidul-Constrained Chamlers — Hems	571
		8 12 1 Lattices and Trallis Coded Modulation /	571
		8.12-1 Lances and Trens Coded Modulation 7	
	0 1 2	0.12-2 Turbo-Coded Banawidin Ejjicteni Modulation	590
	0.15	Problems	590
Chapter 9	Digi	tal Communication Through Band-Limited	
- · · ·	Cha	nnels	597
	9.1	Characterization of Band-Limited Channels	598
	9.2	Signal Design for Band-Limited Channels	602
		9.2–1 Design of Band-Limited Signals for No Intersymbol	
		Interference—The Nyquist Criterion / 9.2–2 Design of	
		Band-Limited Signals with Controlled ISI—Partial-Response	
		Signals / 9.2–3 Data Detection for Controlled ISI /	
		9.2–4 Signal Design for Channels with Distortion	
	9.3	Optimum Receiver for Channels with ISI and AWGN	623
		9.3–1 Optimum Maximum-Likelihood Receiver /	
		9.3–2 A Discrete-Time Model for a Channel with ISI /	
		9.3–3 Maximum-Likelihood Sequence Estimation (MLSE) for	
		the Discrete-Time White Noise Filter Model /	
		9.3–4 Performance of MLSE for Channels with ISI	
	9.4	Linear Equalization	640
		9.4–1 Peak Distortion Criterion / 9.4–2 Mean-Square-Error	
		(MSE) Criterion / 9.4–3 Performance Characteristics of the	
		MSE Equalizer / 9.4–4 Fractionally Spaced	
		Equalizers / 9.4–5 Baseband and Passband Linear Equalizers	
	9.5	Decision-Feedback Equalization	661
		9.5–1 Coefficient Optimization / 9.5–2 Performance	
		Characteristics of DFE / 9.5-3 Predictive Decision-Feedback	
		Equalizer / $9.5-4$ Equalization at the	
		Transmitter—Tomlinson–Harashima Precoding	
	9.6	Reduced Complexity ML Detectors	669
	9.7	Iterative Equalization and Decoding—Turbo	
		Equalization	671
	9.8	Bibliographical Notes and References	673
		Problems	674
Chapter 10	Ada	ptive Equalization	689
	10.1	Adaptive Linear Equalizer	689
		10.1–1 The Zero-Forcing Algorithm / 10.1–2 The LMS	007
		Algorithm / 10.1–3 Convergence Properties of the LMS	
		\boldsymbol{r}	

		Algorithm / 10.1–4 Excess MSE due to Noisy Gradient Estimates / 10.1–5 Accelerating the Initial Convergence Rate in the LMS Algorithm / 10.1–6 Adaptive Fractionally Spaced Equalizer—The Tap Leakage Algorithm / 10.1–7 An Adaptive Channel Estimator for ML Sequence Detection	
	10.2	Adaptive Decision-Feedback Equalizer	705
	10.3	Adaptive Equalization of Trellis-Coded Signals	706
	10.4	Recursive Least-Squares Algorithms for Adaptive	
		Equalization	710
		10.4–1 Recursive Least-Squares (Kalman)	
		Algorithm / 10.4–2 Linear Prediction and the Lattice Filter	
	10.5	Self-Recovering (Blind) Equalization	721
		10.5–1 Blind Equalization Based on the Maximum-Likelihood	
		Criterion / 10.5–2 Stochastic Gradient Algorithms /	
		10.5–3 Blind Equalization Algorithms Based on Second- and	
		Higher-Order Signal Statistics	
	10.6	Bibliographical Notes and References	731
		Problems	732
Chapter 11	Mul	tichannel and Multicarrier Systems	737
	11.1	Multichannel Digital Communications in AWGN	
		Channels	737
		11.1–1 Binary Signals / 11.1–2 M-ary Orthogonal Signals	
	11.2	Multicarrier Communications	743
		11.2–1 Single-Carrier Versus Multicarrier	
		Modulation / 11.2–2 Capacity of a Nonideal Linear Filter	
		Channel / 11.2–3 Orthogonal Frequency Division	
		Multiplexing (OFDM) / 11.2–4 Modulation and	
		Demodulation in an OFDM System / 11.2–5 An FFT	
		Algorithm Implementation of an OFDM System / 11.2–6	
		Spectral Characteristics of Multicarrier Signals / 11.2–7 Bit	
		and Power Allocation in Multicarrier Modulation / 11.2–8	
		Peak-to-Average Ratio in Multicarrier Modulation / 11.2–9	
		Channel Coding Considerations in Multicarrier Modulation	
	11.3	Bibliographical Notes and References	759
		Problems	760
Chapter 12	Spre	ead Spectrum Signals for Digital	
	Con	imunications	762
	12.1	Model of Spread Spectrum Digital Communication	
		System	763
	12.2	Direct Sequence Spread Spectrum Signals	765
		12.2–1 Error Rate Performance of the Decoder /	
		12.2–2 Some Applications of DS Spread Spectrum	
		Signals / 12.2–3 Effect of Pulsed Interference on DS Spread	

		Spectrum Systems / 12.2–4 Excision of Narrowband Interference in DS Spread Spectrum Systems /	
		12.2–5 Generation of PN Sequences	
	12.3	Frequency-Hopped Spread Spectrum Signals	802
		12.3–1 Performance of FH Spread Spectrum Signals in an	
		AWGN Channel / 12.3–2 Performance of FH Spread	
		Spectrum Signals in Partial-Band Interference / 12.3–3 A	
	10.4	CDMA System Based on FH Spread Spectrum Signals	014
	12.4	Other Types of Spread Spectrum Signals	814
	12.5	Synchronization of Spread Spectrum Systems	815
	12.6	Problems	823 823
Chapter 13	Fadi	ing Channels I: Characterization	
0	and	Signaling	830
	13.1	Characterization of Fading Multipath Channels	831
		13.1–1 Channel Correlation Functions and Power	
		Spectra / 13.1–2 Statistical Models for Fading Channels	
	13.2	The Effect of Signal Characteristics on the Choice of a	
		Channel Model	844
	13.3	Frequency-Nonselective, Slowly Fading Channel	846
	13.4	Diversity Techniques for Fading Multipath Channels	850
		13.4–1 Binary Signals / 13.4–2 Multiphase Signals / 13.4–3	
		M-ary Orthogonal Signals	
	13.5	Signaling over a Frequency-Selective, Slowly Fading	
		Channel: The RAKE Demodulator	869
		13.5–1 A Tapped-Delay-Line Channel Model / 13.5–2 The	
		RAKE Demodulator / 13.5–3 Performance of RAKE	
		Demodulator / 13.5-4 Receiver Structures for Channels with	
		Intersymbol Interference	
	13.6	Multicarrier Modulation (OFDM)	884
		13.6–1 Performance Degradation of an OFDM System due to	
		Doppler Spreading / 13.6–2 Suppression of ICI in OFDM	
		Systems	
	13.7	Bibliographical Notes and References	890
		Problems	891
Chapter 14	Fadi	ing Channels II: Capacity and Coding	899
	14.1	Capacity of Fading Channels	900
		14.1–1 Capacity of Finite-State Channels	
	14.2	Ergodic and Outage Capacity	905
		14.2–1 The Ergodic Capacity of the Rayleigh Fading	
		Channel / 14.2–2 The Outage Capacity of Rayleigh Fading	
		Channels	
	14.3	Coding for Fading Channels	918

	14 4	Performance of Coded Systems In Fading Channels	919
	14.4	14 4_1 Coding for Fully Interleaved Channel Model	/./
	14.5	Trellis-Coded Modulation for Fading Channels	929
	1	14 5–1 TCM Systems for Fading Channels / 14 5–2 Multiple	
		Trellis-Coded Modulation (MTCM)	
	14.6	Bit-Interleaved Coded Modulation	936
	14.7	Coding in the Frequency Domain	942
		14.7–1 Probability of Error for Soft Decision Decoding of	
		Linear Binary Block Codes / 147-2 Probability of Error for	
		Hard-Decision Decoding of Linear Block Codes / 14.7-3	
		Unper Bounds on the Performance of Convolutional Codes for	
		a Rayleigh Fading Channel / 147-4 Use of Constant-Weight	
		Codes and Concatenated Codes for a Fading Channel	
	148	The Channel Cutoff Rate for Fading Channels	957
	14.0	14 8–1 Channel Cutoff Rate for Fully Interleaved Fading	
		Channels with CSI at Receiver	
	14 9	Bibliographical Notes and References	960
	140	Problems	961
		1101010113	201
Chapter 15	Mul	tiple-Antenna Systems	966
	15 1	Channel Models for Multiple Antenna Systems	066
	13.1	15 L 1 Signal Transmission Through a Slow Fading	900
		Frequency Nonselective MIMO Channel / 15.1.2 Detection	
		of Data Symbols in a MIMO System / 15.1–2 Detection	
		Transmission Through a Slow Fading Frequency Salactive	
		MIMO Channel	
	15.2	Connective of MIMO Channels	081
	13.2	15.2. 1 Mathematical Preliminarias / 15.2.2 Canacity of a	201
		Fraguancy Nonsalactive Deterministic MIMO	
		Channel / 15.2.3 Capacity of a Frequency Nonselective	
		Errodia Pandom MIMO Channel / 15.2.4 Outage	
		Capacity (152, 5 Capacity of MIMO Channel When the	
		Channel Is Known at the Transmitter	
	153	Spread Spectrum Signals and Multicode Transmission	002
	15.5	15.3 1 Orthogonal Spreading Sequences (15.3.2	332
		Multiplexing Gain Versus Diversity Gain / 15.3.3 Multicode	
		MIMO Systems	
	15 /	Coding for MIMO Channels	1001
	1.5.4	15.4.1 Parformance of Townough Coded SISO Systems in	1001
		R ayloigh Eading Channels / 15 4 2 Bit Interferred Transmel	
		Coding for MIMO Channels / 15.4-2 Dir-Interted Ved Temporal	
		Codes for MIMO Channels / 15.4 - 5 Space-1ime Block	
		Drahability for a Space Time Code / 15.4.5 Space T	
		Trollie Codes for MIMO Chample (15.4–5 Space-Time	
		reus Coaes for MIMO Channels / 15.4–6 Concatenated	
		space-time Codes and Turbo Codes	

	15.5	Bibliographical Notes and References Problems	1021 1021
Chapter 16	Mul	tiuser Communications	1028
-	16.1	Introduction to Multiple Access Techniques	1028
-	16.2	Capacity of Multiple Access Methods	1031
	16.3	Multiuser Detection in CDMA Systems	1036
		16.3-1 CDMA Signal and Channel Models / 16.3-2 The	
		Optimum Multiuser Receiver / 16.3–3 Suboptimum	
		Detectors / 16.3–4 Successive Interference	
		Cancellation / 16.3–5 Other Types of Multiuser	
		Detectors / 16.3-6 Performance Characteristics of Detectors	
	16.4	Multiuser MIMO Systems for Broadcast Channels	1053
		16.4–1 Linear Precoding of the Transmitted Signals / 16.4–2	
		Nonlinear Precoding of the Transmitted Signals—The QR	
		Decomposition / 16.4–3 Nonlinear Vector	
		Precoding / 10.4–4 Lattice Reduction Technique for	
	165	Precoding Pandom Access Mathods	1068
	10.5	16 5-1 ALOHA Systems and Protocols / 16 5-2 Carrier	1008
		Sense Systems and Protocols	
	16.6	Bibliographical Notes and References	1077
		Problems	1078
Annendix A Matrices		1085	
appendix is	A.1	Eigenvalues and Eigenvectors of a Matrix	1086
	A.2	2 Singular-Value Decomposition	1087
	A.3	Matrix Norm and Condition Number	1088
	A.4	The Moore–Penrose Pseudoinverse	1088
Appendix B	Er	ror Probability for Multichannel Binary Signals	1090
	21		1070
Appendix C Error Probabilities for Adaptive Reception			1007
		<i>Mathematical</i> Model for an <i>M</i> Dhase Signaling Communi	1090
	U. J	cation System	1006
	C 2	Characteristic Function and Probability Density Function of	1090
	C.2	the Phase θ	1098
	C.3	From Probabilities for Slowly Fading Rayleigh Channels	1100
	C.4	Error Probabilities for Time-Invariant and Ricean Fading	
		Channels	1104
Appendix D	Sq	uare Root Factorization	1107
References a	nd B	ibliography	1109
Tudan			1140
muex			1142