Part I Methodology

1	Introduction to Stochastic Models in Biology		3
	Susa	nne Ditlevsen and Adeline Samson	
	1.1	Introduction	3
	1.2	Markov Chains and Discrete-Time Processes	4
	1.3	The Wiener Process (or Brownian Motion)	5
	1.4	Stochastic Differential Equations	8
	1.5	Existence and Uniqueness	13
	1.6	Itô's Formula	14
	1.7	Monte Carlo Simulations	16
		1.7.1 The Euler–Maruyama Scheme	16
		1.7.2 The Milstein Scheme	17
	1.8	Inference	17
		1.8.1 Maximum Likelihood	18
		1.8.2 Bayesian Approach	22
		1.8.3 Martingale Estimating Functions	23
	1.9	Biological Applications	25
		1.9.1 Oncology	25
		1.9.2 Agronomy	29
	References 3		
2	One	-Dimensional Homogeneous Diffusions	37
	Mar	tin Jacobsen	
	2.1	Introduction	
	2.2	2 Diffusion Processes	
	2.3	Scale Function and Speed Measure	40
	2.4	Boundary Behavior	
	2.5	Expected Time to Hit a Given Level	54
	Refe	References	

3	A Brief Introduction to Large Deviations Theory		57		
	Gill	es Wainr	ib		
	3.1	Introdu	action	57	
	3.2	Sum of	f Independent Random Variables	58	
	3.3	Genera	I Theory	61	
	3.4	Some I	Large Deviations Principles for Stochastic Processes	64	
		3.4.1	Sanov Theorem for Markov Chains	64	
		3.4.2	Small Noise and Freidlin–Wentzell Theory	65	
	3.5	Conclu	ision	71	
	Refe	References			
4	Som	ie Nume	erical Methods for Rare Events Simulation and		
	Ana	lysis		73	
	Gille	es Wainr	ib		
	4.1	Introdu	iction	73	
	4.2	Monte	-Carlo Simulation Methods	75	
		4.2.1	Overview of the Different Approaches	75	
		4.2.2	Focus on Importance Sampling	78	
	4.3	Numer	ical Methods Based on Large Deviations Theory	87	
		4.3.1	Quasipotential and Optimal Path	87	
		4.3.2	Numerical Methods	88	
	4.4	Conclu	ision	93	
	References			95	

Part II Neuronal Models

5	Stoc	hastic I	ntegrate and Fire Models: A Review on	
	Mat	hematic	al Methods and Their Applications	99
	Lau	ra Sacerd	lote and Maria Teresa Giraudo	
	5.1	Introdu	ction	99
	5.2	Biologi	cal Features of the Neuron	101
	5.3	One Di	mensional Stochastic Integrate and Fire Models	102
		5.3.1	Introduction and Notation	102
		5.3.2	Wiener Process Model	103
		5.3.3	Randomized Random Walk Model	105
		5.3.4	Stein's Model	106
		5.3.5	Ornstein–Uhlenbeck Diffusion Model	107
		5.3.6	Reversal Potential Models	112
		5.3.7	Comparison Between Different LIF Models	117
		5.3.8	Jump Diffusion Models	119
		5.3.9	Boundary Shapes	120
		5.3.10	Further Models	121
		5.3.11	Refractoriness and Return Process Models	122

	5.4	Mathematical Methods for the First Passage Time			
		Problem and Their Application to the Study of Neuronal Models	124		
		5.4.1 Analytical Methods	125		
		5.4.2 Numerical Methods	133		
		5.4.3 Simulation Methods	136		
	5.5	Estimation Problems for LIF Models	139		
		5.5.1 Samples from Membrane Potential Measures	139		
		5.5.2 Samples of ISIs	141		
	Refe	rences	142		
6	Stor	bestic Portial Differential Faustions in Neuropiology			
U	Linear and Nonlinear Models for Sniking Neurons				
	Hen	rv C. Tuckwell			
	6.1	Introduction	150		
	6.2	Linear SPDE Neuronal Models: A Brief Summary	151		
		6.2.1 Geometrical or Anatomical Considerations	152		
		6.2.2 Simple Linear SPDE Models	155		
		6.2.3 Two-Component Linear SPDE Systems	159		
	6.3	Nonlinear Models for Spiking Neurons	160		
		6.3.1 The Ionic Currents Underlying Neuronal Spiking	160		
		6.3.2 A General SPDE for Nerve Membrane Potential	161		
	6.4	Stochastic Spatial Hodgkin–Huxley Model	162		
		6.4.1 Noise-Free Excitation	164		
		6.4.2 Stochastic Stimulation	165		
	6.5	A Stochastic Spatial FitzHugh–Nagumo System	168		
		6.5.1 The Effect of Noise on the Probability of Transmission	168		
	6.6	Discussion	170		
	Refe	ferences			
7	Deta	erministic and Stochastic FitzHugh_Nagumo Systems	175		
<i>'</i>	Micl	hèle Thieullen	175		
	7.1	Introduction	175		
	7.2	FN Systems of ODEs			
	7.3	Large Deviations			
	7.4	Stochastic Perturbation of FN 1			
	7.5	Deterministic FN Including Space Propagation	182		
	Refe	erences	186		
8	Stoc	hastic Modeling of Spreading Cortical Depression	187		
-	Hen	ry C. Tuckwell			
	8.1	Introduction			
	8.2	Reaction–Diffusion Model for Cortical Spreading Depression	189		
	. —	8.2.1 The Standard Parameter Set	192		
	8.3	Random Sources of K ⁺	193		
		8.3.1 Mainly Uniform K^+ Sources with An Isolated			
		Region of Higher Activity	194		

8.4 8.5	Reduced Exchange-Pump Capacity Over a Small Lesion Discussion	195 197
Refe	rences	198
Glossary		
Index		205