CONTENTS

SUMMARY	vii
NOMENCLATURE	ix

Chap	oter 1 – General Introduction	1
1. 1	IMPORTANCY	2
1.2	STATUS OF RESEARCH	3
	1.2.1 HAM simulation tools	3
	1.2.2 Integration efforts	4
	1.2.3 Simulation environment requirements	4
	1.2.4 The Matlab environment	5
	1.2.5 Other simulation environments	7
1.3	PROBLEM STATEMENT	8
1.4	OBJECTIVES AND METHODOLOGY	8
	1.4.1 Research	9
	1.4.2 Design	10
1.5	OUTLINE OF THE THESIS	12
REFE	ERENCES	13

PART I. RESEARCH. THE SIMULATION ENVIRONMENT AS A SUBJECT OF AND TOOL FOR RESEARCH

Preface	17
Chapter 2 - Advanced Simulation of building systems and control	
with SimuLink	19
2.1 INTRODUCTION	20
2.2 THE BUILDING MODEL HAMBASE	21
2.3 THE HAMBASE MODEL IN SIMULINK	25
2.4 THE HEATING SYSTEM IN SIMULINK	27

2.5 ANALYSIS	29
2.6 CONCLUSIONS	33
REFERENCES & APPENDIX	33
REPERENCES & AITENDIX	
Chapter 3 Modeling and solving building physics problems with Comsol	37
3.1 INTRODUCTION	39
3.2 HOW COMSOL WORKS	39
3.3 TEST CASES FOR RELIABILITY	45
3.3.1 1D Moisture transport in a porous material	45
3.3.2 2D Airflow in a room	47
3.3.3 Discussion on reliability	50
3.4 3D COMBINED HEAT AND MOISTURE TRANSPORT	50
3.5 CONCLUSIONS	54
REFERENCES	54
Chapter 4 -Integrated building physics simulation	
with Comsol/SimuLink/Matlab	55
4.1 INTRODUCTION	57
4.2 A COMPLETE EXAMPLE	58
4.3 AIRFLOW AND CONTROLLER	59
4.4 OTHER DEVELOPMENTS	63
4.4.1 2D Convective airflow around a convector	63
4.4.2 A Comsol model connected to a model in SimuLink	66
4.5 CONCLUSIONS	69
REFERENCES	70

PART II. DESIGN. THE SIMULATION ENVIRONMENT AS A TOOL FOR DESIGN

Preface

71

Chapter 5 –Indoor climate design for a monumental building with		
periodic high indoor moisture loads	73	
5.1 INTRODUCTION	75	
5.2 BACKGROUND	75	
5.3 SIMULATION RESULTS	77	
5.4 DISCUSSION OF THE RESULTS	88	
5.4.1 Evaluation of the scenarios	88	
5.4.2 Evaluation of the moisture buffering effect on the HVAC		
performance	89	
5.5 CONCLUSIONS	90	
REFERENCE	91	
Chapter 6 – Application of an integrated indoor climate & HVAC		
model for the indoor climate performance of a museum	93	
6.1 INTRODUCTION	95	
6.2 THE CURRENT INDOOR CLIMATE PERFORMANCE	96	
6.2.1 Review on climate recommendations	96	
6.2.2 Measurements	96	
6.3 HAM MODELING AND VALIDATION	99	
6.3.1 A short review on HAM modeling	99	
6.3.2 The indoor climate and HVAC modeling	99	
6.3.3 The showcase modeling	100	
6.4 SIMULATION RESULTS OF NEW DESIGNS	102	
6.4.1 A new HVAC controller strategy without showcase	102	
6.4.2 The current HVAC system with a showcase	104	
6.4.3 A new HVAC controller with a showcase	105	
6.5 CONCLUSIONS	105	
REFERENCES		

Chapter 7 - Optimal set point operation of the climate control	
of a monumental church	107
7.1 INTRODUCTION	109
7.2 MODELING	110
7.2.1 The church indoor climate model using HAMBase SimuLink	110
7.2.2 The moisture transport model using Comsol	111
7.2.3 The controller (Proportional) using SimuLink	112
7.2.4 The complete model in SimuLink	113
7.3 RESULTS	114
7.3.1 Validation of the HAMBASE model	114
7.3.2 Validation of the Comsol model	115
7.3.3 Drying rates	115
7.4 SET POINT OPERATION STUDY	118
7.4.1 Limitation of the air temperature changing rate	118
7.4.2 Limitation of the relative humidity changing rate	120
7.5 DISCUSSION	123
7.5.1 Comparing the control strategies	123
7.5.2 Optimal set point operation	125
7.6 CONCLUSIONS	126
REFERENCES	126
Chapter 8 - Optimal operation of a hospital power plant	129
8.1 INTRODUCTION	130
8.2 THE APPLICATION	133
8.3 MODELING AND OPTIMIZATION	134
8.3.1 Design a model	134
8.3.2 Define non-controllable and controllable inputs and output	135
8.3.3 Define constraints	135
8.3.4 Define optimization criteria	136
8.3.5 Build a numerical model	137
8.3.6 Select an appropriate time scale	142

8.3.7 Build a numerical optimization routine and calculate the optima	142
8.4 RESULTS	144
8.4.1 The non-controllable input signals of the model i(t)	144
8.4.2 The optimization results	145
8.4.3 Comparing the different strategies	146
8.4.4 The total efficiency of the power plant	148
8.5 CONCLUSIONS	
REFERENCES	150
Chapter 9 – General discussion and conclusions	151
9.1 RESEARCH ORIENTED (PART I)	151
9.1.1 Evaluation	151
9.1.2 Ongoing research driven projects	153
9.2 DESIGN ORIENTED (Part II)	154
9.2.1 Evaluation	154
9.2.2 Ongoing design driven projects	155
9.3 RECOMMENDATIONS	156
Literature	157
Index of models	167
Appendix A IEA Annex 41 preliminary results	169
Appendix B Ongoing research projects	179
Appendix C Preliminary Guideline	185
Appendix D Ongoing design projects	187
Appendix E Additional example of the HAMBase room model	193

Biography

197