Contents

1	Basic	Measure Theory
	1.1	Classes of Sets
	1.2	Set Functions
	1.3	The Measure Extension Theorem
	1.4	Measurable Maps
	1.5	Random Variables
2	Inde	pendence
	2.1	Independence of Events
	2.2	Independent Random Variables
	2.3	Kolmogorov's 0–1 Law 61
	2.4	Example: Percolation
3	Gene	rating Functions
	3.1	Definition and Examples
	3.2	Poisson Approximation
	3.3	Branching Processes
4	The !	Integral
	4.1	Construction and Simple Properties 85
	4.2	Monotone Convergence and Fatou's Lemma
	4.3	Lebesgue Integral Versus Riemann Integral 95
5	Mom	nents and Laws of Large Numbers
	5.1	Moments
	5.2	Weak Law of Large Numbers
	5.3	Strong Law of Large Numbers
	5.4	Speed of Convergence in the Strong LLN
	5.5	The Poisson Process
6	Conv	rergence Theorems
	6.1	Almost Sure and Measure Convergence
	6.2	Uniform Integrability

7	L^p -S	paces and the Radon-Nikodym Theorem	
	7.1 7.2 7.3	Definitions	147
	7.4 7.5 7.6	Lebesgue's Decomposition Theorem	159
8	Cond 8.1 8.2 8.3	itional Expectations	169 172
9	Mart 9.1 9.2 9.3 9.4	ingales Processes, Filtrations, Stopping Times Martingales Discrete Stochastic Integral Discrete Martingale Representation Theorem and the CRR Model	189 194 198
10	Optio 10.1 10.2 10.3	Doob Decomposition and Square Variation	205 209
11	Mart 11.1 11.2 11.3	ingale Convergence Theorems and Their Applications Doob's Inequality	217 219
12	Backs 12.1 12.2 12.3	wards Martingales and Exchangeability Exchangeable Families of Random Variables Backwards Martingales De Finetti's Theorem	231236
13	Conve 13.1 13.2 13.3 13.4	A Topology Primer	245252260
14	Proba 14.1 14.2 14.3 14.4	Product Spaces	273277285
15	Chara 15.1 15.2	Acteristic Functions and the Central Limit Theorem Separating Classes of Functions Characteristic Functions: Examples	295

	15.3 15.4 15.5 15.6	Lévy's Continuity Theorem Characteristic Functions and Moments The Central Limit Theorem Multidimensional Central Limit Theorem	314 320
16	Infini 16.1 16.2	itely Divisible Distributions	331
17	Mark 17.1 17.2 17.3 17.4 17.5 17.6 17.7	Definitions and Construction Discrete Markov Chains: Examples Discrete Markov Processes in Continuous Time Discrete Markov Chains: Recurrence and Transience Application: Recurrence and Transience of Random Walks Invariant Distributions Stochastic Ordering and Coupling	351 358 362 367 371 377
18	Conv 18.1 18.2 18.3 18.4	Periodicity of Markov Chains Periodicity of Markov Chains Coupling and Convergence Theorem Markov Chain Monte Carlo Method Speed of Convergence	389 393 398
19	Mark 19.1 19.2 19.3 19.4 19.5 19.6	Harmonic Functions Reversible Markov Chains Finite Electrical Networks Recurrence and Transience Network Reduction Random Walk in a Random Environment	411 415 416 422 427
20	20.1 20.2 20.3 20.4 20.5 20.6	dic Theory Definitions Ergodic Theorems Examples Application: Recurrence of Random Walks Mixing Entropy	439 443 446 447 450
21	Brow 21.1 21.2 21.3 21.4 21.5 21.6 21.7	Continuous Versions Construction and Path Properties Strong Markov Property Supplement: Feller Processes Construction via L^2 -Approximation The Space $C([0,\infty))$ Convergence of Probability Measures on $C([0,\infty))$	457 463 469 472 475 482

		Pathwise Convergence of Branching Processes*			
22	22.1 22.2 22.3	of the Iterated Logarithm509Iterated Logarithm for the Brownian Motion509Skorohod's Embedding Theorem512Hartman-Wintner Theorem517	9 2		
23	23.1 23.2 23.3 23.4	te Deviations	2 6 1		
24	The H 24.1 24.2 24.3	Poisson Point Process54%Random Measures54%Properties of the Poisson Point Process54%The Poisson-Dirichlet Distribution*55%	3 8		
25	The I 25.1 25.2 25.3 25.4 25.5	tô Integral565Itô Integral with Respect to Brownian Motion565Itô Integral with Respect to Diffusions57The Itô Formula575Dirichlet Problem and Brownian Motion585Recurrence and Transience of Brownian Motion585	3 1 5 3		
26	Stoch 26.1 26.2 26.3	Strong Solutions	9 8		
Not	Notation Index				
Ref	erence	s	7		
Nar	Name Index				
Subject Index					