Contents

List of figures							
Lis	st of	progra	m codes	xix			
1	Intr	oductio	on	1			
	1.1	Objec	tives of this work	2			
	1.2	Strate	gy	3			
	1.3	Organ	nization of this work	5			
	1.4	Biblio	graphy	7			
2	Rela	ated wo	ork	9			
	2.1	Self-r€	pairing hardware	10			
		2.1.1	Multifunctional units	10			
		2.1.2	Dynamic partial reconfiguration for testing and repair	11			
		2.1.3	Distributed self-repairing of a network of FPGA nodes	11			
		2.1.4	Small-scale reconfigurability	13			
		2.1.5	Logic self-repair	14			
		2.1.6	Dual-FPGA architecture for autonomous self-repair	15			
	2.2	Self-re	epairing approaches inspired by biological systems	17			
		2.2.1	Immune system paradigm	17			
		2.2.2	POEtic tissue	18			
		2.2.3	Evolvable hardware	19			
		2.2.4	Embryonics	20			
		2.2.5	Immunotronics	21			
		2.2.6	e-DNA	23			
		2.2.7	Autonomic System on Chip	24			
		2.2.8	Immunocomputing	25			

ĒΚ

Contents

	2.3	Self-repairing in FPGAs	26
		2.3.1 Roving STAR	26
		2.3.2 $\text{TMR} + \text{RoRA}$	27
	2.4	Self-repairing introduced at the hardware description	28
		2.4.1 Automatic insertion of fault tolerant structures	28
	2.5	Comments	28
		2.5.1 Hardware level of abstraction	28
		2.5.2 Hardware platform for the implementation	29
		2.5.3 Type of addressed fault	30
		2.5.4 Error detection technique	31
		2.5.5 Recovery mechanism	32
	2.6	Bibliography	33
2	A	finial immune automo	41
3	- Afti - 9-1	Biological immune systems	41
	J.1	2.1.1 Internal agenta	40
		2.1.2 Enternal agents	40
		2.1.2 External agents	40
		2.1.4 Immune system infrastructure	67
		2.1.5 Immune system agente	60
	29	Artificial immune system models and algorithms	83
	0.2	2.2.1 Positive and negative selection	83
		3.2.1 Clonal selection	86
		3.2.2 Groud Scherford	89
		3.2.4 Dendritic cells	97
		3.2.5 Formal immune network	102
	3.3	Comparison of artificial immune algorithms	105
	3.4	Bibliography	105
,	Fau	It recognition	100
4	Fau	Fault representation	110
	4.1	Fault recognition	115
	4.2	Fault recognition	118
	4.0	Fault space partitioning	110
	4.4	Fault space partition time	120
	4.0	Fault vector dimension reduction	120
	4.0	4.6.1 Principal component analysis	124
		4.6.2 Singular value decomposition	139
	47	Fault pattern vectors number reduction	135
	4.1	4.7.1 Death of immune cells with insufficient stimulation	136
		4.7.2 Elimination of auto-reactive immune cells	138
			100

-

Contents

	4.8	Cytokine formal immune network	139					
		4.8.1 Protein-protein interaction formal model	140					
		4.8.2 Formal immune network	143					
		4.8.3 Molecular recognition	147					
		4.8.4 Cytokine formal immune network	150					
		4.8.5 Apoptosis and auto-immunization	151					
	4.9	Conclusions	152					
	4.10	Bibliography	154					
5	Evaluation of fault recognition methods							
	5.1	Fault recognition module with real fault vector elements	156					
		5.1.1 Fault recognition	158					
		5.1.2 Fault vector dimension reduction	165					
		5.1.3 Fault pattern vectors number reduction	182					
	5.2	Fault recognition module with binary fault vector elements	208					
		5.2.1 Fault recognition	211					
		5.2.2 Fault pattern vectors number reduction	215					
		5.2.3 Fault vector dimension reduction	222					
	5.3	Conclusions	236					
	5.4	Bibliography	238					
6	Implementation of a self-repairing unit							
	6.1	Design of the self-repairing unit	242					
		6.1.1 Initial architecture of the self-repairing unit	242					
		6.1.2 Partial reconfiguration for recovering the unit	269					
		6.1.3 Fault injection for testing the self-repairing unit	280					
	6.2	Simulation of the self-repairing unit	300					
	6.3	Implementation of the self-repairing unit	309					
	6.4	Performance of the self-repairing unit	314					
	6.5	Conclusions	316					
	6.6	Bibliography	317					
7	Major contributions and further work							
	7.1	Major contributions	321					
	7.2	Further work	323					
	7.3	Bibliography	325					
List of publications								
Bibliography								