Contents

Preface	page ix
Contributors	xii
Our Founders	xiii
Introduction	xv

	PA	RT I SIMPLE TYPES $\lambda_{\rightarrow}^{\mathbb{A}}$	1
1	The	e Simply Typed Lambda Calculus	5
	1.1	The systems $\lambda^{\mathbb{A}}_{\rightarrow}$	5
	1.2	First properties and comparisons	19
	1.3	Normal inhabitants	32
	1.4	Representing data types	38
	1.5	Exercises	50
2	\mathbf{Pro}	perties	55
	2.1	Normalization	55
	2.2	Proofs of strong normalization	64
	2.3	Checking and finding types	68
	2.4	Checking inhabitation	77
	2.5	Exercises	86
3	Too	ls	94
	3.1	Semantics of λ_{\rightarrow}	94
	3.2	Lambda theories and term models	107
	3.3	Syntactic and semantic logical relations	114
	3.4	Type reducibility	136
	3.5	The five canonical term-models	156
	3.6	Exercises	181

vi		Contents		
4	Def	inability, unification and matching		
		tten with the collaboration of Gilles Dowek	192	
	4.1	Undecidability of lambda-definability	192	
	4.2	Undecidability of unification	207	
	4.3	Decidability of matching of rank 3	213	
	4.4	Decidability of the maximal theory	230	
	4.5	Exercises	240	
5	Extensions			
	Wri	tten in part with the collaboration of Marc Bezem	243	
	5.1	Lambda delta	243	
	5.2	Surjective pairing	255	
	5.3	Gödel's system \mathcal{T} : higher-order primitive recursion	282	
	5.4	Spector's system \mathcal{B} : bar recursion	303	
	5.5	Platek's system \mathcal{Y} : fixed point recursion	312	
	5.6	Exercises	315	
6	App	olications	323	
	6.1	Functional programming	323	
	6.2	Logic and proof-checking	341	
	6.3	Proof theory		
		Written with the collaboration of Silvia Ghilezan	351	
	6.4	Grammars, terms and types		
		Written with the collaboration of Michael Moortgat	363	
	PAI	RT II RECURSIVE TYPES $\lambda_{=}^{\mathcal{A}}$		
		ten with the collaboration of Felice Cardone		
		Mario Coppo	377	
7	The	Systems $\lambda_{-}^{\mathcal{A}}$	379	
	7.1	Type algebras and type assignment \Box	379	
	7.2	More on type algebras	390	
		Recursive types via simultaneous recursion	397	
	7.4	Recursive types via μ -abstraction	407	
	7.5	Recursive types as trees	424	
	7.6	Special views on trees	437	
	7.7	Exercises	442	
8	Pro	perties of Recursive Types	451	
	8.1	Simultaneous recursions vs μ -types	451	
	8.2	Properties of μ -types	455	
	8.3	Properties of types defined by a simultaneous recursion	475	
	8.4	Exercises	490	

		Contents	vii
9	Pro	perties of Terms with Types	494
	9.1	First properties of $\lambda_{=}^{\mathcal{A}}$	494
	9.2	Finding and inhabiting types	497
	9.3	Strong normalization	507
	9.4	Exercises	518
10	Models		520
	10.1	Interpretations of type assignments in $\lambda_{=}^{\mathcal{A}}$	520
	10.2	Interpreting \mathbf{T}_{μ} and \mathbf{T}_{μ}^{*}	525
	10.3	Type interpretations in systems with explicit typing	541
	10.4	Exercises	547
11	Арр	lications	554
	11.1	Subtyping	554
	11.2	The principal type structures	567
	11.3	Recursive types in programming languages	570
	11.4	Further reading	573
	11.5	Exercises	576

PART III INTERSECTION TYPES λ_{\cap}^{S}

Written with the collaboration of Fabio Alessi, Mariangiola Dezani-Ciancaglini, Furio Honsell and Paula Severi

12	An Example System	579
	12.1 The type assignment system $\lambda_{\cap}^{\text{BCD}}$	580
	12.2 The filter model $\mathcal{F}^{\mathrm{BCD}}$	586
	12.3 Completeness of type assignment	589
13	Type Assignment Systems	591
	13.1 Type theories	594
	13.2 Type assignment	606
	13.3 Type structures	610
	13.4 Filters	614
	13.5 Exercises	617
14	Basic Properties of Intersection Type Assignment	619
	14.1 Inversion lemmas	622
	14.2 Subject reduction and expansion	627
	14.3 Exercises	634
15	Type and Lambda Structures	640
	15.1 Meet semi-lattices and algebraic lattices	643

577

Contents

	15.2	Natural type structures and lambda structures	656
	15.3	Type and zip structures	662
	15.4	Zip and lambda structures	667
	15.5	Exercises	676
16	Filte	er Models	680
	16.1	Lambda models	683
	16.2	Filter models	689
	16.3	\mathcal{D}_{∞} models as filter models	701
	16.4	Other filter models	716
	16.5	Exercises	724
17	Adv	anced Properties and Applications	728
	17.1	Realizability interpretation of types	730
	17.2	Characterizing syntactic properties	735
	17.3	Approximation theorems	742
	17.4	Applications of the approximation theorem	757
	17.5	Undecidability of inhabitation	
		Written with the collaboration of Paweł Urzyczyn	762
	17.6	Exercises	786
Refe	erence	25	791
Indices		814	
	Inde	x of terms	815
	Inde	x of citations	823
Index of symbols		828	