Contents

Preface XIII List of Contributors XV

1	Development of Sustainable Biocatalytic Reduction Processes		
	for Organic Chemists	1	
	Roland Wohlgemuth		

- 1.1 Introduction 1
- 1.2 Biocatalytic Reductions of C=O Double Bonds 3
- 1.2.1 Biocatalytic Reductions of Ketones to Alcohols 3
- 1.2.2 Biocatalytic Reductions of Aldehydes to Alcohols -> 6
- 1.2.3 Biocatalytic Reductions of Carboxylic Acids to Aldehydes 8
- 1.2.4 Biocatalytic Reductions of Carboxylic Acids to Alcohols 8
- 1.3 Biocatalytic Reductions of C=C Double Bonds . 8
- 1.4 Biocatalytic Reductions of Imines to Amines 10
- 1.5 Biocatalytic Reductions of Nitriles to Amines 12
- 1.6 Biocatalytic Deoxygenation Reactions 12
- 1.7 Emerging Reductive Biocatalytic Reactions 14
- 1.8 Reaction Engineering for Biocatalytic Reduction Processes 16
- 1.9 Summary and Outlook 17 References 18
- 2 Reductases: From Natural Diversity to Established Biocatalysis and to Emerging Enzymatic Activities 27

Elena Fernández-Álvaro and Pablo Domínguez de María

- 2.1 Reductases: Natural Occurrence and Context for Biocatalysis 27
- 2.2 Emerging Cases of Reductases in Biocatalysis 36
- 2.2.1 Motivation: The Quest for Novel Enzymes and Reactivities 36
- 2.2.2 Imine Reductases 36
- 2.2.3 Nitrile Reductases: The Next Member in the Portfolio of Reductases? 38
- 2.2.4 Other Emerging N-Based Enzymatic Reductions: Nitroalkenes and Oximes 41
- 2.2.5 From Carboxylic Acids to Alcohols: Biocatalysis 42

VI Contents

2.3	Concluding Remarks 44 References 44
•	Cumhadia Strategica Dacad an C. C Biograductions for the Drangustion
3	Synthetic Strategies Based on C=C Bioreductions for the Preparation of Biologically Active Molecules 49
	Francesco G. Gatti, Fabio Parmeggiani, and Alessandro Sacchetti
3.1	Introduction 49
3.2	Bioreduction of α , β -Unsaturated Carbonyl Compounds 53
3.2.1	Aldehydes 54
3.2.2	Ketones 61
3.3	Bioreduction of Nitroolefins 65
3.4	Bioreduction of α_{β} -Unsaturated Carboxylic Acids and Derivatives 68
3.4.1	Monoesters and Lactones 68
3.4.2	Diesters 71
3.4.3	Carboxylic Acids 73
3.4.4	Anhydrides and Imides 73
3.5	Bioreduction of α , β -Unsaturated Nitriles 74
3.6	Concluding Remarks 76
	References 77
4	Synthetic Strategies Based on C=O Bioreductions for the
	Preparation of Biologically Active Molecules 85
	Aníbal Cuetos, Alba Díaz-Rodríguez, and Iván Lavandera
4.1	Introduction 85
4.2	Synthesis of Biologically Active Compounds through C=O .
	Bioreduction 87
4.2.1	Keto Esters 87
4.2.1.1	α-Keto Esters 87
4.2.1.2	β-Keto Esters 89
4.2.1.3	Other Keto Esters 89
4.2.2	Diketones 90
4.2.3	α-Halo Ketones 91
4.2.4	(Hetero)Cyclic Ketones 94
4.2.5	"Bulky–Bulky" Ketones 96
4.2.6	Miscellaneous 98
4.3	Other Strategies to Construct Biologically Active Compounds 99
4.4	Summary and Outlook 106
	References 107
5	Protein Engineering: Development of Novel Enzymes for the Improved
	Reduction of C=C Double Bonds 113
	Sabrina Kille and Manfred T. Reetz
5.1	Introduction 113
5.2	The Protein Engineering Process and Employed Mutagenesis
	Methods 114

.

5.3	Examples of Rational Design of Old Yellow Enzymes 117		
5.4	Evolving Old Yellow Enzymes (OYEs) 117		
5.4.1	Evolving OYE1 as a Catalyst in the Stereoselective Reduction		
	of 3-Alkyl-2-cyclohexenone Derivatives and Baylis–Hillman		
	Adducts 119		
5.4.2	Evolving the Pentaerythritol Tetranitrate (PETN) Reductase		
	as a Catalyst in the Reduction of α , β -Unsaturated Carbonyl		
	Compounds and E-Nitroolefins 123		
5.4.3	Evolving Nicotinamide-Dependent 2-Cyclohexenone Reductase (NCR)		
	from Zymomonas mobilis for the Reduction of α , β -Unsaturated		
	Ketones 129		
5.4.4	Evolving the YqjM from Bacillus subtilis for Enhanced Activity, Substrate		
	Scope, and Stereoselectivity in the Reduction of α , β -Unsaturated		
	Ketones 129		
5.5	Conclusions and Perspectives 134		
	References 134		
6	Protein Engineering: Development of Novel Enzymes for		
•	the Improved Reduction of C=O Double Bonds 139		
	Nobuya Itoh and Yoshihide Makino		
6.1	Introduction 139		
6.2	Detailed Characterization of PAR 140		
6.2.1	Location of PAR in Styrene Metabolic		
	Pathway 140		
6.2.2	Physicochemical Properties of PAR 142		
6.2.3	Enzymatic Properties of PAR 147		
6.2.4	Docking Model Construction of PAR 151		
6.3	Detailed Characterization of LSADH 151		
6.3.1	Screening of LSADH from Styrene-Assimilating Soil		
	Microorganisms 151		
6.3.2	Physicochemical Properties of LSADH 153		
6.3.3	Enzymatic Properties of LSADH 153		
6.4	Engineering of PAR for Increasing Activity in 2-Propanol/Water		
	Medium 157		
6.4.1	Construction of Sar268 Mutant 157		
6.4.2	Construction of HAR1 Mutant 160		
6.4.3	Characterization of Sar268 and HAR1 161		
6.5	Application of Whole-Cell Biocatalysts Possessing Mutant PARs and		
	LSADH 165		
6.5.1	E. coli Whole-Cell Biocatalysts Possessing Mutant PARs and		
	LSADH 165		
6.5.2	Application of Immobilized E. coli Whole-Cell Catalysts to Continuous		
	Production of Chiral Alcohol 168		
6.5.3	Application of Immobilized E. coli Whole-Cell Catalysts (LASDH) for		

Regenerating NADH with IPA 171

VIII Contents

6.6	Engineering of β -Keto Ester Reductase (KER) for Raising Thermal
	Stability and Stereoselectivity 172
6.6.1	Enzymatic Properties of KER 172
6.6.2	Engineering of KER and Characterization of Mutant Enzymes 175
6.7	New Approach for Engineering or Obtaining Useful ADHs/
	Reductases 177
6.7.1	Engineering the Coenzyme Dependency of Ketol-Acid
	Reductoisomerase (KARI) 177
6.7.2	Engineering Substrate- and Stereospecificity of Reductases
	by Structure-Guided Method 178
6.7.3	Engineering Database: Systematic Information of
	Sequence-Structure-Function 179
6.7.4	Metagenomics 180
	References 181
-	
7	Synthetic Applications of Aminotransferases for the Preparation of
	Biologically Active Molecules 187
7.1	Sachin Pannuri, Sanjay Kamat, and Abraham R. Mártin-García Introduction 187
7.1.1	Aminotransferases 187
7.1.2	Transamination Reaction 188
7.1.2	Stangagelegtivity of Amin strangformers 180
7.2	Applications 192
7.2.1	Biotransformation Process 192
7.2.2	Biologically Active Molecules 195
7.2.3	Process Economy 196
7.3	Challenges 196
7.3.1	Substrate Specificity 197
7.3.2	Improving Reaction Yield 197
7.3.3	Process Scale-Up 200
7.4	Future Research Needs 203
7.5	Conclusions 203
	References 204
8	Strategies for Cofactor Regeneration in Biocatalyzed Reductions 209
	Selin Kara, Joerg H. Schrittwieser, and Frank Hollmann
8.1	Introduction: NAD(P)H as the Universal Reductant in Reduction
	Biocatalysis 209
8.2	The Most Relevant Cofactor Regeneration Approaches – and How to
	Choose the Most Suitable One 210
8.2.1	Electrochemical Regeneration of NAD(P)H 212
8.2.2	H_2 as Reducing Agent 213
8.2.3	Formates as Reducing Agents 215
8.2.4	Phosphites as Stoichiometric Reductants 218
8.2.5	Alcohols as Stoichiometric Reductants 218

8.2.6	Glucose as Stoichiometric Reductant 223
8.3	Coupling the Reduction Reaction to a Regeneration Reaction Producing a Valuable Compound 225
8.4	Avoiding NAD(P)H: Does It Also Mean Avoiding the
	Challenge? 228
8.5	Conclusions 230
	References 231
9	Solvent Effects in Bioreductions 239
	Yan Ni, Hui-Lei Yu, and Jian-He Xu
9.1	Introduction 239
9.2	Solvent Systems for Biocatalytic Reductions 240
9.2.1	Bioreduction in Aqueous Systems 240
9.2.2	Bioreduction in Monophasic Aqueous–Organic Systems 241
9.2.3	Bioreduction in Biphasic Aqueous–Organic Systems 243
9.2.4	Bioreduction in Micro- or Nonaqueous Systems 245
9.2.5	Bioreduction in Nonconventional Media 247
9.2.5.1	Ionic Liquids 247
9.2.5.2	Supercritical Fluids 250
9.2.5.3	Combining ILs and SFs 251
9.2.5.4	Gas-Phase Media 252
9.2.5.5	Reverse Micelles 254
9.3	Solvent Control of Enzyme Selectivity 255
9.4	Concluding Remarks 257
	References 258
10	Application of In situ Product Removal (ISPR) Technologies for
	Implementation and Scale-Up of Biocatalytic Reductions 263
	John M. Woodley
10.1	Introduction 263
10.2	Process Requirements for Scale-Up 263
10.3	Bioreduction Process Engineering 265
10.4	In situ Product Removal 267
10.5	Biocatalyst Format 269
10.5.1	Whole-Cell Processes 271
10.5.2	Isolated Enzyme Processes 272
10.6	Selected Examples 273
10.6.1	ISPR with Resins 273
10.6.2	ISPR with Solvent Extraction 274
10.6.3	ISPR with Crystallization 274
10.6.4	Removal of Acetone 275
10.7	Future Outlook 276
1 0.7 .1	Protein Engineering 276
10.7.2	Choice of Methods 277
10.7.3	Process Integration 278

(Contents

10.8	Conclusions 280
	References 280
11	Bioreductions in Multienzymatic One-Pot and Cascade Processes 285
	Daniela Monti and Erica E. Ferrandi
11.1	Introduction 285
11.2	Coupled Oxidation and Reduction Reactions 287
11.3	Consecutive and Cascade One-Pot Reductions 292
11.4	Cascade Processes, Including Biocatalyzed Reductive Amination Steps 296
11.5	Other Examples of Multienzymatic Cascade Processes, Including
11.0	Bioreductive Reactions 302
	References 304
12	Dynamic Kinetic Resolutions Based on Reduction Processes 307
10.1	Dimitris Kalaitzakis and Ioulia Smonou
12.1	Introduction 307
12.2	Cyclic Compounds 309
12.3	Acyclic α-Substituted-β-Keto Esters and 2-Substituted-1,3-
12.4	Diketones 313
12.4	Acyclic Ketones and Aldehydes 322 Conclusions 323
12.5	References 324
	References J24
13	Relevant Practical Applications of Bioreduction Processes in the
	Synthesis of Active Pharmaceutical Ingredients 329
	Gábor Tasnádi and Mélanie Hall
13.1	Introduction 329
13.2	Ketoreductases 337
13.2.1	Ethyl 4-chloro-3-hydroxybutanoate 337
13.2.2	Atorvastatin 338
13.2.3	Montelukast 339
1 3.2.4	Ramatroban 340
13.2.5	Ezetimibe 341
13.2.6	Profens 342
13.2.7	Atazanavir 343
13.2.8	Chemokine Receptor Inhibitor 343
1 3.2.9	Duloxetin 344
13.2.10	6-Hydroxybuspirone 345
13.2.11	LY 300164 346
13.2.12	Paclitaxel 346
13.3	Ene Reductases 347
13.3.1	Levodione 347
13.3.2	(+)-Dihydrocarvone 348
13.3.3	Butyrolactone – Jasplakinolide and Amphidinolides 348

×

- 13.3.4 (R)-Flurbiprofen 349
- 13.3.5 Ethyl (S)-2-ethoxy-3-(4-methoxyphenyl)propanoate Tesaglitazar 350
- 13.3.6 Methyl (Z)-2-bromocrotonate Antidiabetic Drug Candidates 350
- 13.3.7 Roche Ester 351
- 13.3.8 Human Neurokinin-1 Receptor Antagonists 352
- 13.3.9 Asymmetric Synthesis of Amino Acid Derivatives 353
- 13.4 Others 355
- 13.4.1 Amino Acid Dehydrogenase-Catalyzed Processes 355
- 13.4.1.1 Saxagliptin 355
- 13.4.1.2 Omapatrilat 356
- 13.4.1.3 Inogatran 357
- 13.4.1.4 Corticotropin-releasing Factor-1 (CRF-1) Receptor Antagonist 357
- 13.4.1.5 AG7088 358
- 13.4.2 Pyrrolo[2,1-c][1,4]benzodiazepines (Antitumor Agents) 358
- 13.4.3 Dihydrofolate Reductase 359
- 13.4.4 β-Carbolines 359
- 13.5 Bioreduction-Supported Processes 361
- 13.6 Outlook 363
 - References 365

Index 375