Table of Contents

Pr	eface	. xi
1.	Introduction: Data-Analytic Thinking	1
	The Ubiquity of Data Opportunities	1
	Example: Hurricane Frances	3
	Example: Predicting Customer Churn	4
	Data Science, Engineering, and Data-Driven Decision Making	4
	Data Processing and "Big Data"	7
	From Big Data 1.0 to Big Data 2.0	8
	Data and Data Science Capability as a Strategic Asset	9
	Data-Analytic Thinking	12
	This Book	14
	Data Mining and Data Science, Revisited	14
	Chemistry Is Not About Test Tubes: Data Science Versus the Work of the Data	
	Scientist	15
	Summary	16
2.	Business Problems and Data Science Solutions	. 19
	Fundamental concepts: A set of canonical data mining tasks; The data mining process	?SS;
	Supervised versus unsupervised data mining.	
	From Business Problems to Data Mining Tasks	19
	Supervised Versus Unsupervised Methods	24
	Data Mining and Its Results	25
	The Data Mining Process	26
	Business Understanding	28
	Data Understanding	28
	Data Preparation	30
	Modeling	31
	Evaluation	31

	Deployment	32
	Implications for Managing the Data Science Team	34
	Other Analytics Techniques and Technologies	35
	Statistics	35
	Database Querying	37
	Data Warehousing	38
	Regression Analysis	39
	Machine Learning and Data Mining	39
	Answering Business Questions with These Techniques	40
	Summary	41
3.	Introduction to Predictive Modeling: From Correlation to Supervised Segmentat	tion. 43
	Fundamental concepts: Identifying informative attributes; Segmenting data by progressive attribute selection.	,
	Exemplary techniques: Finding correlations; Attribute/variable selection; Tree induction.	
	Models, Induction, and Prediction	44
	Supervised Segmentation	48
	Selecting Informative Attributes	49
	Example: Attribute Selection with Information Gain	56
	Supervised Segmentation with Tree-Structured Models	62
	Visualizing Segmentations	67
	Trees as Sets of Rules	71
	Probability Estimation	71
	Example: Addressing the Churn Problem with Tree Induction	73
	Summary	78
4.	Fitting a Model to Data Fundamental concepts: Finding "optimal" model parameters based on data; Ch the goal for data mining; Objective functions; Loss functions.	81 noosing
	Exemplary techniques: Linear regression; Logistic regression; Support-vector ma	achines.
	Classification via Mathematical Functions	83
	Linear Discriminant Functions	85
	Optimizing an Objective Function	87
	An Example of Mining a Linear Discriminant from Data	88
	Linear Discriminant Functions for Scoring and Ranking Instances	90
	Support Vector Machines, Briefly	91
	Regression via Mathematical Functions	94
	Class Probability Estimation and Logistic "Regression"	96
	* Logistic Regression: Some Technical Details	99
	Example: Logistic Regression versus Tree Induction	102
	Nonlinear Functions, Support Vector Machines, and Neural Networks	105

Summary	108
Overfitting and Its Avoidance	111
Fundamental concents: Generalization: Fitting and overfitting: Complexity control	

5.	Overfitting and Its Avoidance	111
	Fundamental concepts: Generalization; Fitting and overfitting; Complexity control	
	Exemplary techniques: Cross-validation; Attribute selection; Tree pruning; Regularization.	
	Generalization	111
	Overfitting	113
	Overfitting Examined	113
	Holdout Data and Fitting Graphs	113
	Overfitting in Tree Induction	116
	Overfitting in Mathematical Functions	118
	Example: Overfitting Linear Functions	119
	* Example: Why Is Overfitting Bad?	124
	From Holdout Evaluation to Cross-Validation	126
	The Churn Dataset Revisited	129
	Learning Curves	130
	Overfitting Avoidance and Complexity Control	133
	Avoiding Overfitting with Tree Induction	133
	A General Method for Avoiding Overfitting	134
	* Avoiding Overfitting for Parameter Optimization	136
	Summary	140
6	Similarity, Neighbors, and Clusters	141
υ.	Fundamental concepts: Calculating similarity of objects described by data; Using	171
	similarity for prediction; Clustering as similarity-based segmentation.	
	Exemplary techniques: Searching for similar entities; Nearest neighbor methods;	
	Clustering methods; Distance metrics for calculating similarity.	
	Similarity and Distance	142
	Nearest-Neighbor Reasoning	144
	Example: Whiskey Analytics	144
	Nearest Neighbors for Predictive Modeling	146
	How Many Neighbors and How Much Influence?	149
	Geometric Interpretation, Overfitting, and Complexity Control	151
	Issues with Nearest-Neighbor Methods	154
	Some Important Technical Details Relating to Similarities and Neighbors	157
	Heterogeneous Attributes	157
	* Other Distance Functions	158
	* Combining Functions: Calculating Scores from Neighbors	161
	Clustering	163
	Example: Whiskey Analytics Revisited	163

Hierarchical Clustering

	Nearest Neighbors Revisited: Clustering Around Centroids	169
	Example: Clustering Business News Stories	174
	Understanding the Results of Clustering	177
	* Using Supervised Learning to Generate Cluster Descriptions	179
	Stepping Back: Solving a Business Problem Versus Data Exploration	182
	Summary	184
7.	Decision Analytic Thinking I: What Is a Good Model?	187
	Fundamental concepts: Careful consideration of what is desired from data science	
	results; Expected value as a key evaluation framework; Consideration of appropriation comparative baselines.	te
	Exemplary techniques: Various evaluation metrics; Estimating costs and benefits; Calculating expected profit; Creating baseline methods for comparison.	
	Evaluating Classifiers	188
	Plain Accuracy and Its Problems	189
	The Confusion Matrix	189
	Problems with Unbalanced Classes	190
	Problems with Unequal Costs and Benefits	193
	Generalizing Beyond Classification	193
	A Key Analytical Framework: Expected Value	194
	Using Expected Value to Frame Classifier Use	195
	Using Expected Value to Frame Classifier Evaluation	196
	Evaluation, Baseline Performance, and Implications for Investments in Data	204
	Summary	207
8.	Visualizing Model Performance	209
-•	Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results.	5
	Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC curves.	
	Ranking Instead of Classifying	209
	Profit Curves	212
	ROC Graphs and Curves	214
	The Area Under the ROC Curve (AUC)	219
	Cumulative Response and Lift Curves	219
	Example: Performance Analytics for Churn Modeling	223
	Summary	231
9.	Evidence and Probabilities	233
	Fundamental concepts: Explicit evidence combination with Bayes' Rule; Probabilist reasoning via assumptions of conditional independence.	
	Exemplary techniques: Naive Bayes classification; Evidence lift.	

	Example: Targeting Online Consumers With Advertisements	233
	Combining Evidence Probabilistically	235
	Joint Probability and Independence	236
	Bayes' Rule	237
	Applying Bayes' Rule to Data Science	239
	Conditional Independence and Naive Bayes	240
	Advantages and Disadvantages of Naive Bayes	242
	A Model of Evidence "Lift"	244
	Example: Evidence Lifts from Facebook "Likes"	245
	Evidence in Action: Targeting Consumers with Ads	247
	Summary	247
10.	Representing and Mining Text	. 249
	Fundamental concepts: The importance of constructing mining-friendly data representations; Representation of text for data mining.	
	Exemplary techniques: Bag of words representation; TFIDF calculation; N-grams; Stemming; Named entity extraction; Topic models.	
	Why Text Is Important	250
	Why Text Is Difficult	250
	Representation	251
	Bag of Words	252
	Term Frequency	252
	Measuring Sparseness: Inverse Document Frequency	254
	Combining Them: TFIDF	256
	Example: Jazz Musicians	256
	* The Relationship of IDF to Entropy	261
	Beyond Bag of Words	263
	N-gram Sequences	263
	Named Entity Extraction	264
	Topic Models	264
	Example: Mining News Stories to Predict Stock Price Movement	266
	The Task	266
	The Data	268
	Data Preprocessing	271
	Results	271
	Summary	275
11.	Decision Analytic Thinking II: Toward Analytical Engineering	277
	Fundamental concept: Solving business problems with data science starts with	
	analytical engineering: designing an analytical solution, based on the data, tools, a techniques available.	ınd
	Exemplary technique: Expected value as a framework for data science solution desi	gn.

	Targeting the Best Prospects for a Charity Mailing	278
	The Expected Value Framework: Decomposing the Business Problem and	
	Recomposing the Solution Pieces	278
	A Brief Digression on Selection Bias	280
	Our Churn Example Revisited with Even More Sophistication	281
	The Expected Value Framework: Structuring a More Complicated Business	
	Problem	281
	Assessing the Influence of the Incentive	283
	From an Expected Value Decomposition to a Data Science Solution	284
	Summary	287
12.	Other Data Science Tasks and Techniques	289
	Fundamental concepts: Our fundamental concepts as the basis of many common a science techniques; The importance of familiarity with the building blocks of data science.	data
	Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bi variance decomposition of error; Ensembles of models; Causal reasoning from data	
	Co-occurrences and Associations: Finding Items That Go Together	290
	Measuring Surprise: Lift and Leverage	291
	Example: Beer and Lottery Tickets	292
	Associations Among Facebook Likes	293
	Profiling: Finding Typical Behavior	296
	Link Prediction and Social Recommendation	301
	Data Reduction, Latent Information, and Movie Recommendation	302
	Bias, Variance, and Ensemble Methods	306
	Data-Driven Causal Explanation and a Viral Marketing Example	309
	Summary	310
13,	Data Science and Business Strategy	313
	Fundamental concepts: Our principles as the basis of success for a data-driven	
	business; Acquiring and sustaining competitive advantage via data science; The	
	importance of careful curation of data science capability.	
	Thinking Data-Analytically, Redux	313
	Achieving Competitive Advantage with Data Science	315
	Sustaining Competitive Advantage with Data Science	316
	Formidable Historical Advantage	317
	Unique Intellectual Property	317
	Unique Intangible Collateral Assets	318
	Superior Data Scientists	318
	Superior Data Science Management	320
	Attracting and Nurturing Data Scientists and Their Teams	321

Examine Data Science Case Studies	323		
Be Ready to Accept Creative Ideas from Any Source	324		
Be Ready to Evaluate Proposals for Data Science Projects	324		
Example Data Mining Proposal	325		
Flaws in the Big Red Proposal	326		
A Firm's Data Science Maturity	327		
14. Conclusion.	331		
The Fundamental Concepts of Data Science	331		
Applying Our Fundamental Concepts to a New Problem: Mining Mob.	ile		
Device Data	334		
Changing the Way We Think about Solutions to Business Problems	337		
What Data Can't Do: Humans in the Loop, Revisited	338		
Privacy, Ethics, and Mining Data About Individuals	341		
Is There More to Data Science?	342		
Final Example: From Crowd-Sourcing to Cloud-Sourcing	343		
Final Words	344		
A. Proposal Review Guide			
B. Another Sample Proposal	351		
Glossary	355		
Bibliography			
Index	367		