Contents

	Ack	nowledgements	page x	
	Introduction			
		What is this book?	1	
		What this book is not	1	
		Get started	1	
		Short history of geodynamics and numerical geodynamic		
		modelling	4	
		A few words about programming and visualisation	7	
		How to use this book	8	
		Programming exercises and homework	9	
1	The continuity equation		11	
	1.1	Continuum – what is it?	11	
	1.2	Continuity equation	13	
	1.3	Eulerian and Lagrangian points – what is the difference?	14	
	1.4	Derivation of the Eulerian continuity equation	15	
	1.5	Derivation of the Lagrangian continuity equation	18	
	1.6	Comparing Eulerian and Lagrangian continuity equations.		
		Advective transport term	20	
	1.7	Incompressible continuity equation	23	
		Analytical exercise	23	
		Programming exercise and homework	24	
2	Density and gravity		25	
	2.1	Density of rocks and minerals. Equations of state	25	
	2.2	Gravity and gravitational potential	30	
		Analytical exercise	34	
		Programming exercises and homework	35	

3	Nun	nerical solutions of partial differential equations	37
	3.1	Finite-difference method	37
	3.2	Solving linear equations	43
	3.3	Geometrical and global indexing of unknowns	47
		Programming exercises and homework	48
4	Stre	ss and strain	51
	4.1	Stress	51
	4.2	Strain and strain rate	56
		Analytical exercise	59
		Programming exercise and homework	60
5	The	momentum equation	61
	5.1	Momentum equation	61
	5.2	Newtonian law of viscous friction	64
	5.3	Navier-Stokes equation	65
	5.4	Poisson equation	68
	5.5	Stream function approach	69
		Analytical exercise	71
		Programming exercise and homework	71
6	Visc	ous rheology of rocks	73
	6.1	Rock rheology	73
	6.2	Effective viscosity	74
	6.3	Non-Newtonian channel flow	79
		Programming exercises and homework	80
7	Numerical solutions of the momentum and continuity equations		83
	7.1	Grids	83
	7.2	Discretisation of the equations	86
	7.3	Conservative finite differences	87
	7.4	Boundary conditions	92
	7.5	Indexing of unknowns	95
		Programming exercises and homework	101
8	The	advection equation and marker-in-cell method	105
	8.1	Advection equation	105
	8.2	Eulerian advection methods	106
	8.3	Marker-in-cell techniques	113
		Programming exercises and homework	119
9	The	heat conservation equation	123
	9.1	Fourier's law of heat conduction	123
	9.2	Heat conservation equation	124
	9.3	Heat generation and consumption	127

vi

Contents

	9.4 Simplified temperature equations	128
	9.5 Heat diffusion timescales	129
	Analytical exercises	130
	Programming exercises and homework	131
10	Numerical solution of the heat conservation equation	133
	10.1 Explicit and implicit formulation of the temperature	
	equation	133
	10.2 Conservative finite differences	135
	10.3 Advection of temperature with Eulerian methods	140
	10.4 Advection of temperature with markers	141
	10.5 Thermal boundary conditions	144
	Programming exercises and homework	146
11	2D thermomechanical code structure	149
	11.1 What do we expect from geodynamic codes?	149
	11.2 Thermomechanical code structure	150
	11.3 Adding self-gravity and free surface	158
	Programming exercise and homework	163
12	Elasticity and plasticity	165
	12.1 Why care about elasticity and plasticity?	165
	12.2 Elastic rheology	165
	12.3 Rotation of elastic stresses	168
	12.4 Maxwell visco-elastic rheology	172
	12.5 Plastic rheology	173
	12.6 Visco-elasto-plastic rheology	175
	Analytical exercise	177
	Programming exercises and homework	177
13	2D implementation of visco-elasto-plastic rheology	179
	13.1 Viscous-like reformulation of visco-elasto-plasticity	179
	13.2 Structure of visco-elasto-plastic thermomechanical	
	code	180
	13.3 Visco-elasto-plastic iterations	189
	Programming exercises and homework	191
14	The multigrid method	193
	14.1 Multigrid – what is it?	193
	14.2 Solving the Poisson equation with multigrid	200
	14.3 Solving Stokes and continuity equations with multigrid	205
	Programming exercises and homework	217
15	Programming of 3D problems	221
	15.1 Why simply not always 3D?	221

	15.2	3D staggered grid and discretisation of momentum,	
		continuity, temperature and Poisson equations	222
	15.3	Solving discretised 3D equations	231
		Programming exercises and homework	239
16	Numer	ical benchmarks	241
	16.1	Code benchmarking: why should we spend time on it?	241
	16.2	Test 1. Rayleigh-Taylor instability benchmark	242
	16.3	Test 2. Falling block benchmark	244
	16.4	Test 3. Channel flow with a non-Newtonian rheology	246
	16.5	Test 4. Non-steady temperature distribution in a	
		Newtonian channel	247
	16.6	Test 5. Couette flow with viscous heating	250
	16.7	Test 6. Advection of sharp temperature fronts	253
	16.8	Test 7. Channel flow with variable thermal conductivity	253
	16.9	Test 8. Thermal convection with constant and variable	
		viscosity	255
	16.10	Test 9. Stress build-up in a visco-elastic Maxwell body	260
	16.11	Test 10. Recovery of the original shape of an elastic slab	261
	16.12	Test 11. Numerical sandbox benchmark	263
	16.13	Possible further benchmarks	267
		Programming exercises and homework	267
17	Design	n of 2D numerical geodynamic models	269
	17.1	Warning message!	269
	17.2	What is numerical modelling all about?	269
	17.3	Material properties	270
	17.4	Visco-elasto-plastic slab bending	271
	17.5	Retreating oceanic subduction	276
	17.6	Lithospheric extension	279
	17.7	Continental collision	282
	17.8	Slab breakoff	287
	17.9	Intrusion emplacement into the crust	291
	17.10	Mantle convection with phase changes	296
	17.11	Deformation of self-gravitating planetary body	301
		Programming exercise and homework	306
	Epilogue: outlook		307
		Where are we now?	307
		Where to go further?	307
		State-of-the-art overview	311
		Efficient direct solvers	312
		Parallelisation of numerical codes	313

viii

Contents	ix
Mesh refinement algorithms	313
Including complex realistic physics in numerical	
geodynamic models	314
3D visualisation challenges	317
Conceptual warning	318
Conclusion	318
Appendix: MATLAB program examples	319
References	
Index	340