CONTENTS

Sections marked with an asterisk are somewhat out of the book's main line of development and may be omitted in a first reading.

Preface

Notation

Copyright Acknowledgements

PART ONE PRELIMINARIES

I HISTORICAL INTRODUCTION 3

1 History of Non-Euclidean Geometry 4

Euclid's Fifth Postulate
Alternative postulates of Proclos, Wallis, Legendre, Saccheri
Gauss, and non-Euclidean geometry
The geometry of Gauss, Bolyai, and Lobachevski
Klein's model
Inner properties of curved surfaces
Curvature determined from distances
The metric
Gaussian Curvature
Riemannian geometry

2 History of the Theory of Gravitation 11

Galileo and falling bodies [] Measurements of the ratio of gravitational and inertial mass, by Newton, Bessel, Eötvös, and Dicke [] The inverse-square law [] Newton's theory of gravitation [] Anomalous precession of the perihelia of Mercury [] Newcomb and Seeliger

xii Contents

3 History of the Principle of Relativity 15

Inertial frames in Newtonian mechanics
The Galileo group
Noninertial frames and absolute space Newton's rotating bucket
Mach's principle
Inertial frames and the rotation of the universe
Maxwell's equations not
Galilean-invariant
The ether
The Michelson-Morley experiment
Lorentz
invariance
Relativity restored by Einstein
The Principle of Equivalence
Scalar gravitational theories
Gravitation and the metric tensor
The General
Theory of Relativity

Bibliography 20

References 21

2 SPECIAL RELATIVITY 25

1 Lorentz Transformations 25

The transformations defined [] Invariant proper time [] Invariant speed of light [] Only Lorentz transformations leave the proper time invariant [] Homogeneous, inhomogeneous, proper, improper Lorentz transformations [] Rotations and boosts

2 Time Dilation 29

The special-relativistic dilation [] The Döppler effect

3 Particle Dynamics 31

Relativistic force [] The relativistic second law of motion

4 Energy and Momentum 32

The energy-momentum four-vector
The nonrelativistic limit
Lorentz invariance of the conservation laws
Mass as a form of energy

5 Vectors and Tensors 35

Contravariant and covariant four-vectors [] Raising-and lowering indices [] Gradients [] Tensors [] Linear combinations, direct products, contraction, differentiation [] The Minkowski tensor [] The Levi-Civita tensor [] The zero tensor [] Lorentz invariant equations

6 Currents and Densities 39

The current four-vector [] Conservation [] Constancy and Lorentz invariance of the total charge

7 Electrodynamics 41

The field-strength tensor [] Manifestly invariant forms of the Maxwell equations

8 Energy-Momentum Tensor 43

Energy-momentum tensor of point particles
The conservation law
Collisions
Charged particles Energy-momentum tensor of electromagnetic fields

9 Spin 46

Total angular momentum $\hfill \square$ Internal and orbital angular momenta $\hfill \square$ The spin four-vector

10 Relativistic Hydrodynamics 47

Perfect fluids Pressure and proper energy density Energy-momentum tensor Velocity four-vector The particle current Relativistic Euler equation The entropy equation Equations of state Speed of sound

11 Relativistic Imperfect Fluids* 53

The Eckart formalism \Box Entropy production \Box Heat conduction, shear viscosity, bulk viscosity \Box Lorentz covariant dissipative terms in the energy-momentum tensor \Box Cases of small bulk viscosity

12 Representations of the Lorentz Group* 58

Group representations \square The infinitesimal Lorentz group \square Commutation relations \square The representations (A, B) \square Tensors and spinors \square Decomposition according to spin \square Representations up to a sign

13 Temporal Order and Antiparticles* 61

The relativity of temporal order Absorption before emission? The quantum paradox Antiparticles necessary in a relativistic quantum theory

Bibliography 63

References 64

PART TWO THE GENERAL THEORY OF RELATIVITY

3 THE PRINCIPLE OF EQUIVALENCE 67

1 Statement of the Principle 67

Equivalence of gravitation and inertia [] Analogy with metric geometry [] The weak and strong principles of equivalence

xiv Contents

2 Gravitational Forces 70

The equation of motion [] The affine connection [] The metric tensor [] Motion of photons [] Light travel times [] Determination of the locally inertial frames

3 Relation between $g_{\mu\nu}$ and $\Gamma^{\lambda}_{\mu\nu}$ **73**

Derivatives of the metric in terms of the affine connection \square The Principle of Equivalence sharpened \square Solution for the affine connection \square Inverse of the metric tensor \square Variational form of the equations of motion \square Geodesics

4 The Newtonian Limit 77

Relation between g_{00} and the Newtonian potential

5 Time Dilation 79

Time dilation in a gravitational field \square Red shift of spectral lines \square The solar red shift \square White dwarf red shifts \square The Pound-Rebka experiment \square Red and blue shifts from artificial satellites \square Quantum derivation

6 Signs of the Times 85

Congruence relating the metric and Minkowski tensors
Sylvester's law of inertia Signs of the metric eigenvalues

7 Relativity and Anisotropy of Inertia 86

Mach versus Newton 🗌 The Einstein compromise 📋 The Hughes-Drever experiment

Bibliography 88

References 89

4 TENSOR ANALYSIS 9I

1 The Principle of General Covariance 91

General covariance as an expression of the Principle of Equivalence
Contrast between general covariance and Lorentz invariance
Dynamic symmetries
General covariance sufficient only on small scales

2 Vectors and Tensors 93

Scalars, contravariant vectors, covariant vectors, tensors [] The metric and Kronecker tensors [] Invariant equations

3 Tensor Algebra 96

Linear combinations [] Direct products [] Contraction [] Raising and lowering indices

4 Tensor Densities 98

Transformation of the metric determinant
Scalar densities
Tensor densities
Weights
Volume elements as scalar densities
The Levi-Civita tensor density
Tensor density algebra

5 Transformation of the Affine Connection 100

The inhomogeneous transformation law \square Transformation of derivatives of the metric tensor \square Alternative derivation of the relation between the affine connection and metric tensor \square Alternative derivation of the equation of motion

6 Covariant Differentiation 103

Transformation of derivatives of tensors
Covariant derivatives of tensors
Covariant derivatives of tensor densities
Linear combinations, direct products,
contraction
Covariant derivative of the metric tensor
Raising and lowering
indices
Algorithm for the effects of gravitation

7 Gradient, Curl, and Divergence 106

Covariant derivatives of scalars \square Antisymmetric covariant derivatives of vectors \square Covariant divergence of vectors \square Trace of the affine connection \square Gauss's theorem \square Cyclic sums of covariant derivatives

8 Vector Analysis in Orthogonal Coordinates* 108

Diagonal metrics [] "Ordinary" components [] Volumes [] Scalar products [] Gradient, curl, and divergence [] The Laplacian

9 Covariant Differentiation Along a Curve 110

Derivatives along a curve [] Vectors [] Tensors [] Relation to ordinary covariant derivatives [] Parallel transport

10 The Electromagnetic Analogy* 111

Gauge invariance [] Gauge-covariant derivatives [] Conserved currents

xvi Contents

11 *p*-Forms and Exterior Derivatives* 113

p-Forms \square Exterior products \square Differential forms \square Exterior derivatives \square Poincaré's lemma \square Converse to Poincaré's lemma \square Orientable manifolds \square Integrals of p-forms \square The generalized Stokes's theorem

References 119

5 EFFECTS OF GRAVITATION 12I

1 Particle Mechanics 121

Parallel transport of velocity and spin [] Torqueless force [] Thomas precession [] Fermi transport

2 Electrodynamics 124

Generally covariant forms of the Maxwell equations
Electromagnetic force four-vector
Current four-vector
Conservation law

3 Energy-Momentum Tensor 126

Covariant divergence of the energy-momentum tensor
Ideal gas
Electromagnetic fields
Total energy, momentum. angular momentum

4 Hydrodynamics and Hydrostatics 127

Energy-momentum tensor of perfect fluids
The conservation laws
Normalization of the velocity four-vector Hydrostatic equilibrium

References 129

6 CURVATURE I3I

1 Definition of the Curvature Tensor 131

Second derivatives of the metric needed to construct new tensors
Third derivatives of the transformed coordinate
The Riemann-Christoffel curvature tensor
Uniqueness of generally covariant equations

2 Uniqueness of the Curvature Tensor 133

Uniqueness of the curvature tensor in locally inertial coordinates [] Uniqueness in general coordinates [] Ricci tensor [] Curvature scalar

3 Round Trips by Parallel Transport 135

Change in a vector parallel-transported around a closed curve \Box Construction of vector fields with vanishing covariant derivatives

4 Gravitation versus Curvilinear Coordinates 138

Diagnosis of inertial and noninertial coordinates
Necessary and sufficient conditions for absence of a gravitational field

5 Commutation of Covariant Derivatives 140

Commutator of covariant derivatives of a covariant vector \square Extension to general tensors

6 Algebraic Properties of $R_{\lambda\mu\nu\kappa}$ 141

Fully covariant curvature tensor
Symmetry, antisymmetry, and cyclicity
Uniqueness of the contracted tensors

7 Description of Curvature in N Dimensions* 142

The Petrov notation [] Number of algebraically independent components [] Special forms of the curvature tensor in one, two, and three dimensions [] Number of curvature scalars [] The Weyl tensor

8 The Bianchi Identities 146

The general Bianchi identities 🗌 Contracted Bianchi identities

9 The Geometric Analogy^{*} 147

Geometric concepts useful but not essential in general relativity
Geometric significance of the curvature tensor

10 Geodesic Deviation* 148

Relative motion of freely falling particles

Bibliography 149

References 149

7 EINSTEIN'S FIELD EQUATIONS 151

1 Derivation of the Field Equations 151

Energy-momentum tensor as the right-hand side of the field equation Properties of the left-hand side Einstein's field equations Vanishing of the Ricci tensor in vacuum The cosmological constant

2 Another Derivation* 155

Nonmetric tensors 🗍 General linear equation 📋 Ambiguity removed by Newtonian limit xviii Contents

3 The Brans-Dicke Theory 157

Reciprocal gravitational constant as a scalar field Properties of the scalar field energy-momentum tensor Brans-Dicke field equations The Einstein limit

4 Coordinate Conditions 161

Bianchi identities and nonuniqueness of solutions of the Einstein equations Analogy with electrodynamics Harmonic coordinate conditions Wave equations for the coordinates

5 The Cauchy Problem 163

Constraints on the initial data
Ambiguity in the solutions
Removal of the ambiguity by coordinate conditions
Stability of the initial constraints

6 Energy, Momentum, and Angular Momentum of Gravitation 165

Quasilinear form of the Einstein field equations \Box Energy-momentum tensor of gravitation \Box Total energy, momentum, and angular momentum of an isolated system and its gravitational field \Box Quadratic approximation to the energy-momentum tensor of gravitation \Box Lorentz covariance and convergence of the total energy and momentum \Box Calculation of the total energy, momentum, and angular momentum from the asymptotic field \Box Positivity of the energy \Box Invariance of the total energy and momentum under coordinate transformations that approach the identity at infinity \Box Additivity of the energy and momentum \Box Yet another derivation of the field equations

Bibliography 171

References 172

PART THREE APPLICATIONS OF GENERAL RELATIVITY

8 CLASSIC TESTS OF EINSTEIN'S THEORY 175

1 The General Static Isotropic Metric 175

The metric in terms of four unknown functions
Elimination of off-diagonal terms
The standard form
The isotropic form
Metric inverse and determinant
Affine connection
Ricci tensor
Harmonic coordinates

2 The Schwarzschild Solution 179

Vacuum equations in "standard" coordinates 🗌 Solution for the metric 🗌 Isotropic and harmonic forms 🗋 Identification of the integration constant

3 Other Metrics 182

The Robertson expansion
Conversion to standard and harmonic forms
Reduction to two unknowns

4 General Equations of Motion 185

Orbital equations in standard coordinates
Constants of the motion
Particle
in a circular orbit
Orbit shapes

5 Unbound Orbits: Deflection of Light by the Sun 188

Impact parameter and asymptotic velocity
General orbit shapes
Robertson expansion
Deflection of light by the sun Conceptual problems
Observational problems
Summary of optical observations
Long baseline interferometry
Radio observations

6 Bound Orbits: Precession of Perihelia 194

Evaluation of the constants of motion [] Orbit shapes and precession per revolution [] Robertson expansion [] Conceptual problems [] Theory and observation for Mercury, Venus, Earth, and Icarus [] Newtonian perturbations [] Solar oblateness

7 Radar Echo Delay 201

Time as a function of position [] The Robertson expansion [] Time delay [] Observational difficulties [] Comparison of theory and observation [] Echo arrival times in a semirealistic model

8 The Schwarzschild Singularity* 207

Singularity of the metric at the Schwarzschild radius
Practical irrelevance of the singularity
Singularity Singularity-free coordinate systems

Bibliography 209

References 209

9 POST-NEWTONIAN CELESTIAL MECHANICS 2II

1 The Post-Newtonian Approximation 212

Expansions in powers of the typical velocity ____ Post-Newtonian approximation ____ Terms needed in the affine connection ____ Terms needed in the metric ____ Expansion of the Ricci tensor ____ Expansion of the energy-momentum tensor ____ Post-Newtonian field equations ____ Solutions ____ Scalar potential, vector potential, and second potential

xx Contents

2 Particle and Photon Dynamics 220

Post-Newtonian equation of motion [] Proper time [] Single-particle Lagrangian [] Equation of motion of photons

3 The Energy-Momentum Tensor 222

Newtonian conservation laws Dest-Newtonian conservation laws Energymomentum tensor for freely falling particles Dest-Newtonian program

4 Multipole Fields 225

The metric far from a finite body [] The metric anywhere outside a spherical body [] The metric outside a rotating sphere

5 Precession of Perihelia 230

Runge-Lenz vector Additivity of contributions to the precession Precession of perihelia for a spherical nonrotating sun Effect of solar rotation

6 Precession of Orbiting Gyroscopes 233

Equation of motion of the spin
Redefinition of the spin Observability of the precession Geodetic precession Hyperfine precession Satellite experiments

7 Spin Precession and Mach's Principle* 239

Vanishing of precession in inertial frames
The Lense-Thirring effect
The Kerr solution
The Brill-Cohen solution

8 Post-Newtonian Hydrodynamics* 241

Post-Newtonian program for cold fluids
Newtonian conservation law
Post-Newtonian field equations
Fluids with nonvanishing temperature

9 Approximate Solutions to the Brans-Dicke Theory 244

Post-Newtonian field equations
Solution for a static spherically symmetric mass
Evaluation of the Robertson parameters
Effects of rotation
Effective
"constant" of gravitation

Bibliography 248

References 249

IO GRAVITATIONAL RADIATION 251

1 The Weak-Field Approximation 252

Einstein equations for a weak field [] Gauge invariance [] Harmonic coordinates [] Retarded wave solutions [] Homogeneous solutions

2 Plane Waves 255

Physical and unphysical components of the polarization tensor [] Helicities [] Analogy with electromagnetic plane waves

3 Energy and Momentum of Plane Waves 259

Gauge invariance of the energy-momentum tensor [] Evaluation of the energy-momentum tensor

4 Generation of Gravitational Waves 260

Power per solid angle emitted by a periodic source \Box Energy per solid angle emitted by a Fourier integral source \Box Emission of gravitational radiation in collisions \Box Gravitational radiation from the sun

5 Quadrupole Radiation 267

Small sources [] Total power emitted by a periodic source [] Total energy emitted by a Fourier integral source [] Comments on calculation of the quadrupole tensor [] Radiation by a plane sound wave [] Weber's cylinders [] Radiation by a rotating body [] Negligibility of gravitational radiation in celestial mechanics [] Pulsars

6 Scattering and Absorption of Gravitational Radiation 274

Scattering amplitude \square Scattering cross-section \square Total cross-section \square Optical theorem

7 Detection of Gravitational Radiation 276

Resonant quadrupole antennas [] Total and scattering cross-sections [] Longitudinal antennas [] Spherical antennas [] Tuning [] Detection of the Crab pulsar [] Steady and burst sources [] Earth and moon as antennas [] Weber's experiments [] Future experiments

8 Quantum Theory of Gravitation* 285

Gravitons 🗌 Number density in plane waves 🗌 Graviton emission in atomic collisions 🗋 Graviton emission in particle collisions 🗋 Infrared divergences 🗋 Spontaneous and induced emission 🗋 Quantum gravitational field 🗋 Problems with Lorentz covariance 🗋 Approaches to the quantization problem 🗋 Necessity of the Principle of Equivalence

9 Gravitational Disturbances in Gravitational Fields* 290

Palatini identity
Einstein's equations for small perturbations Equivalent solutions
The Lie derivative

Bibliography 293

xxii Contents

II STELLAR EQUILIBRIUM AND COLLAPSE 297

1 Differential Equations for Stellar Structure 299

The fundamental equation of relativistic stellar equilibrium \square Isentropic stars \square The interior metric \square The total mass, nucleon number, thermal energy, gravitational energy \square Stellar structure determined by central density

2 Stability 304

Transition from stability to instability when the energy is stationary [] Variational form of the equilibrium condition

3 Newtonian Stars: Polytropes and White Dwarfs 308

The fundamental equation of nonrelativistic stellar equilibrium [] Polytropes [] The Lane-Emden function [] Masses and radii as functions of central density [] Thermal and gravitational energies as functions of mass and radius [] Stability [] Vibration and rotation frequencies [] White dwarfs [] The Chandrasekhar limit [] The surface potential

4 Neutron Stars 317

Neutron degeneracy pressure Analogy with white dwarfs Mass and radius as functions of central density The limiting configuration Stability The Oppenheimer-Volkoff limit Hydrogen contamination Beta stability The minimum mass Muon and baryon contamination More realistic models Pulsars

5 Supermassive Stars 325

Radiation-dominated pressure \square Newtonian structure \square General relativity and stability

6 Stars of Uniform Density 330

Solution of the fundamental equation [] Upper limit on the surface red shift [] Large central red shifts

7 Time-Dependent Spherically Symmetric Fields 335

The standard form [] Elements of the Ricci tensor [] The Birkhoff theorem

8 Comoving Coordinates 338

The comoving coordinate systems 🗌 Gaussian and Gaussian normal coordinates 🗌 Elements of the Ricci tensor

9 Gravitational Collapse 342

Interior solution in comoving coordinates
Collapse in a finite proper time
Matching to the exterior solution Evolution of the surface red shift External
field measurements Carter's theorem Efficiency of energy production
Inevitability of collapse Black holes

Bibliography 350

References 352

PART FOUR FORMAL DEVELOPMENTS

12 THE ACTION PRINCIPLE 357

1 The Matter Action: An Example 358

Equations of motion and field equations for a collisionless plasma
Tentative action
Principle of stationary action
Verification of the action principle

2 General Definition of $T^{\mu\nu}$ 360

Energy-momentum tensor as the functional derivative of the action with respect to the metric ______ Verification for a collisionless plasma ______ Electric current as the functional derivative of the action with respect to the vector potential

3 General Covariance and Energy-Momentum Conservation 361

Infinitesimal coordinate transformations of dynamical variables and the metric General covariance implies conservation of the energy-momentum tensor Gauge invariance implies conservation of the electric current

4 The Gravitational Action 364

The action for a gravitational field \Box Derivation of the Einstein equations \Box Derivation of the Bianchi identities

5 The Tetrad Formalism* 365

Spinors and general covariance Definition of the tetrad Scalar components of tensor fields General covariance and local Lorentz covariance Coordinate tensors Lorentz tensors and spinors Coordinate scalar derivatives Definition of the energy-momentum tensor Symmetry and conservation of the energy-momentum tensor Derivation of the field equations

xxiv Contents

I3 SYMMETRIC SPACES 375

1 Killing Vectors 375

Isometries 🗌 Killing vectors 🗌 Maximum number of independent Killing vectors 🗋 Homogeneous spaces 🗍 Isotropic spaces 🗋 Maximally symmetric spaces 🗋 Integrability conditions

2 Maximally Symmetric Spaces: Uniqueness 381

Structure of the Riemann-Christoffel tensor for maximally symmetric spaces [] Constancy of the curvature [] Equivalence of maximally symmetric metrics with equal curvature

3 Maximally Symmetric Spaces: Construction 385

Embedding in (N + 1) dimensions \Box Calculation of the metric \Box Rotations and quasitranslations \Box Killing vectors \Box Geodesics \Box Curvature \Box Locally Euclidean maximally symmetric spaces \Box Global properties \Box Volume \Box The deSitter metric

4 Tensors in a Maximally Symmetric Space 392

Form-invariant tensors
Maximally form-invariant tensors

5 Spaces with Maximally Symmetric Subspaces 395

Canonical form of the metric \Box Spherically symmetric spaces and space-times \Box Spherically symmetric and homogeneous space-times

Bibliography 404

References 404

PART FIVE COSMOLOGY

I4 COSMOGRAPHY 407

1 The Cosmological Principle 409

Cosmic standard coordinates [] Equivalent coordinates [] Isometries and form invariance [] Isotropy and homogeneity

2 The Robertson-Walker Metric 412

General form of the metric [] Volume and circumference of space [] Cosmic scale factor [] Rotations and quasitranslations [] Comoving coordinates [] Free fall of the fundamental observers [] Perfect fluid form of the energy-momentum tenso: [] Conservation of energy and galaxies [] Proper distance

3 The Red Shift 415

Relation between photon departure and arrival times and light source location \square The red-shift parameter $z \square$ Red shifts as Döppler shifts \square Discovery of the red shifts \square Slipher, Wirtz, Lundmark, and Hubble

4 Measures of Distance 418

Light paths Parallax and parallax distance Apparent luminosity and luminosity distance Angular diameter and angular diameter distance Proper motion and proper-motion distance Relations among the measures of distance Sources with smooth edges Sources with smooth spectra Astronomical unit, parsec, apparent magnitude, absolute magnitude, distance modulus, color index

5 The Cosmic Distance Ladder 427

Kinematic Methods: The sun, trigonometric parallax, moving clusters, the Hyades, statistical proper motion studies [] Main-Sequence Photometry: The Hertzsprung-Russell relation, open clusters and globular clusters, stellar populations [] Variable Stars: R R Lyrae stars, classical Cepheids, W Virginis stars, the period-luminosity relation, recalibration of the distance scale, source of the discrepancy, relative sizes of galaxies [] Novae, H II regions, Brightest stars, Globular Clusters, and so on: Distance to the Virgo cluster [] Brightest Galaxies: Absolute magnitude of NGC4472, Scott effect

6 The Red-Shift Versus Distance Relation 441

Hubble constant and deacceleration parameter \Box Expansion in powers of z for time of flight, radial coordinate, luminosity distance, apparent luminosity, apparent magnitude \Box Problems in the measurement of H_0 and q_0 : Galactic rotation, aperture, k-term, absorption, uncertainty in L, Scott effect, shear field, galactic evolution \Box The Hubble program \Box Recent measurements \Box Quasistellar objects \Box Functional equation for the scale factor \Box Rate of change of red shifts

7 Number Counts 451

Number counts as a function of red shift and apparent luminosity or flux density Spectral index Source evolution Series expansions for nearby sources Radio source surveys Excess of faint sources

8 The Steady State Cosmology 459

The perfect cosmological principle [] The steady state metric [] Continuous creation [] Red shift versus luminosity distance [] Number counts

Bibliography 464

IS COSMOLOGY: THE STANDARD MODEL 469

1 Einstein's Equations 470

Robertson-Walker metric, affine connection, Ricci tensor [] First-order field equation [] Upper limit on the age of the universe [] Curvature and the future of the universe [] Mach's principle [] Newtonian cosmology

2 Density and Pressure of the Present Universe 475

Critical density \Box Density of galactic mass \Box Intergalactic mass inside and outside galactic clusters \Box Radio, microwave, far-infrared, optical, X-ray, γ -ray, and cosmic ray densities \Box Pressure

3 The Matter-Dominated Era 481

Time as a function of $R \square$ Age of the universe \square Red shift versus luminosity distance and parallax distance \square Number counts \square Measurements of the age of the universe: uranium dating, globular clusters \square Particle and event horizons

4 Intergalactic Emission and Absorption Processes 491

Optical depth \Box Stimulated emission \Box The Einstein relation \Box Isotropic background \Box Resonant absorption \Box Absorption trough \Box Absorption and emission of 21-cm radiation \Box Search for Lyman α absorption \Box Isotropic X-ray background \Box Thermal history of intergalactic hydrogen \Box Thomson scattering \Box Time delay by intergalactic plasma \Box Extragalactic pulsars

5 The Cosmic Microwave Radiation Background 506

Black-body radiation \square Black-body temperature and antenna temperature \square Models with *TR* constant \square Specific photon entropy \square Hot models \square Estimates of black-body temperature in the cosmological theory of element synthesis \square Observation of the cosmic microwave radiation background \square Absorption by interstellar molecules \square Summary of measurements of black-body temperature \square Gray-body radiation and the Rayleigh-Jeans law \square Expected departures from the black-body spectrum \square Anisotropies of small and large angular scale \square Velocity of the solar system \square Homogenization of the universe \square Discrete source models \square Scattering of cosmic ray electrons, electrons in radio sources, cosmic ray photons, and protons

6 Thermal History of the Early Universe 528

Summary of the early history of the universe \Box Time scale \Box Thermal equilibrium \Box Vanishing chemical potentials \Box The lepton-photon era \Box Conditions at 10^{12} °K \Box Decoupling of neutrinos \Box Neutrino temperature after electron-positron annihilation \Box Time as a function of temperature \Box Degenerate neutrinos \Box Measurements of neutrino degeneracy

7 Helium Synthesis 545

Theories of nucleosynthesis \Box Neutron-proton conversion rates \Box Neutron abundance as a function of time \Box Equilibrium abundances of complex nuclei \Box The deuterium bottleneck \Box Helium production at 10^{9} °K \Box Measurements of the cosmic helium abundance: stellar masses and luminosities, solar neutrino experiments, direct solar measurements, theory of globular clusters, stellar spectra, spectroscopy of interstellar matter, extragalactic measurements \Box Modifications in the expected helium abundance: cool models, fast or slow models, neutrino interactions, degeneracy

8 The Formation of Galaxies 561

Jeans's theory [] Analogy with plasma waves [] Acoustic limit [] Jeans's mass [] Effect of black-body background radiation [] Phases of galactic growth [] Acoustic damping [] Critical mass [] Observation of protogalactic fluctuations as small-scale anisotropies in the microwave background

9 Newtonian Theory of Small Fluctuations 571

Unperturbed solutions [] First-order equations [] Plane-wave solutions [] Rotational modes [] Differential equation for compressional modes [] Zeropressure solutions: growth from recombination to the present [] Zero-curvature solutions: stable and unstable modes

10 General-Relativistic Theory of Small Fluctuations 578

Dissipative terms in the energy-momentum tensor [] Unperturbed solutions [] Equivalent solutions [] Elimination of space-time and time-time components [] Perturbations in the affine connection, Ricci tensor, source tensor [] First-order Einstein equations and equations of motion [] Unphysical solutions [] Plane waves [] Radiative modes: absorption and instability of gravitational waves [] Rotational modes [] Compressional modes: four coupled equations, long wavelength limit, growth at early times

11 The Very Early Universe 588

Elementary and composite particle models [] Fossil quarks and gravitons [] Heat production by bulk viscosity [] Symmetric cosmologies [] Necessity of a past singularity [] Necessity of a future singularity [] Periodic cosmologies

Bibliography 597

xxviii Contents

16 COSMOLOGY: OTHER MODELS 611

1 Naive Models: The Olbers Paradox 611

Infinite density of starlight in an infinite eternal universe \square Effects of absorption \square Radiation and neutrino densities in modern cosmologies

2 Models with a Cosmological Constant 613

Effective density and pressure
Static Einstein model
deSitter model
Lemaître models
Coasting period
Eddington-Lemaître model
Instability
of the static model

3 The Steady State Model Revisited 616

Correction term in the field equation \square The *C*-field \square Density of the universe \square Continuous creation of background radiation \square Action-at-a-distance formulations of electrodynamics

4 Models with a Varying Constant of Gravitation 619

Weakness of gravitation \square Numerical coincidences \square Dirac's theory: R and G versus $t \square$ The Brans-Dicke theory: field equations, initial constraint, solutions for zero pressure and curvature, nucleosynthesis, decrease in $G \square$ Upper limits on the rate of change of G: radar observations of Mercury and Venus, lunar laser ranging, solar eclipse records, fossil corals, effects on the earth's crust, stellar evolution, early temperature of the earth

Bibliography 631

References 631

APPENDIX

Some Useful Numbers 635

INDEX 641