Contents

ĺ	Intr	roducti	ion to Grey Systems Theory	1
	1.1		arance and Growth of Grey Systems Research	
			The Scientific Background	
			The Development History and Current State	
			Characteristics of Unascertained Systems	
			1.1.3.1 Incomplete Information	5
			1.1.3.2 Inaccuracies in Data	
			1.1.3.3 The Scientific Principle of Simplicity	
			1.1.3.4 Precise Models Suffer from Inaccuracies	
		1.1.4	Comparison of Several Studies of Uncertain Systems	
		1.1.5	Emerging Studies on Uncertain Systems	11
			Position of Grey Systems Theory in Cross-	
			Disciplinary Researches	13
	1.2	Basic	s of Grey Systems	15
		1.2.1	Elementary Concepts of Grey Systems	15
			Fundamental Principles of Grey Systems	
			Main Components of Grey Systems Theory	
2	Basic Building Blocks			
	2.1	Grey	Numbers, Degree of Greyness, and Whitenization	19
			Grey Numbers	
			Whitenization of Grey Numbers and Degree of Greyness	
		2.1.3	Degree of Greyness Defined by Using Axioms	27
	2.2	Seque	ence Operators	29
			Systems under Shocking Disturbances and Sequence	
			Operators	30
		2.2.2	Axioms That Define Buffer Operators	31
			Properties of Buffer Operators	
		2.2.4	Construction of Practically Useful Buffer Operators	33
	2.3	Gene	ration of Grey Sequences	42
			Average Generator	

XVI Contents

		2.3.2	Smoothness of Sequences	43
			Stepwise Ratio Generator	
		2.3.4	Accumulating and Inverse Accumulating Generators	46
	2.4	Expon	entiality of Accumulating Generations	48
		•	,	
3			ence and Evaluations	
	3.1		ncidence and Degree of Grey Incidences	
			Grey Incidence Factors and Set of Grey Incidence Operators	
		3.1.2	Metric Spaces	54
			Degrees of Grey Incidences	
	3.2		al Grey Incidences	
			Absolute Degree of Grey Incidence	
			Relative Degree of Grey Incidence	
			Synthetic Degree of Grey Incidence	
	3.3		ncidence Models Based on Similarity and Closeness	
	3.4	Grey C	Cluster Evaluations	68
		3.4.1	Grey Incidence Clustering	68
		3.4.2	Grey Variable Weight Clustering	70
		3.4.3	Grey Fixed Weight Clustering	72
	3.5	Grey E	Evaluation Using Triangular Whitenization Functions	75
		3.5.1	Evaluation Model Using Endpoint Triangular	
		,	Whitenization Functions	75
		3.5.2	Evaluation Model Using Center-Point Triangular	
		,	Whitenization Functions	81
			Comparison between Evaluation Models of Triangular	
			Whitenization Functions	
	3.6		ations	
			Order of Grey Incidences	
			Preference Analysis	
		3.6.3	Practical Applications	92
,	•	G ,	N. 11.	107
4			ms Modeling	
	4.1		M(1,1) Model The Basic Form of GM(1,1) Model	
	4.2		Expanded Forms of GM(1,1) Modelements on GM(1,1) Models	
	4.2		Remnant GM(1,1) Model	
	12	4.Z.Z (Groups of GM(1,1) Modelsable Ranges of GM(1,1) Models	110
	4.3		M(r,h) Models	
	4.4		VI(r,n) Models	
			The GM(0,N) Model	
		4.4.2	The GM(2,1) and Verhulst Models	125
		4.4.5	THE CHAI(2,1) and Actinitist Models	.145

Contents XVII

		4.4.3.1 The GM(2,1) Model	.125
		4.4.3.2 The VerhulstModel	.127
		4.4.4 The GM(r,h) Models	.130
	4.5	Grey Systems Predictions	133
		4.5.1 Sequence Predictions	.135
		4.5.2 Interval Predictions	
		4.5.3 Disaster Predictions	
		4.5.3.1 Grey Disaster Predictions	
		4.5.3.2 Seasonal Disaster Predictions	
		4.5.4 Stock-Market-Like Predictions	
		4.5.5 Systems Predictions	
		4.5.5.1 The Thought of Five-Step Modeling	
		4.5.5.2 System of Prediction Models	
5	Disc	rete Grey Prediction Models	149
	5.1	The Basics	149
		5.1.1 Definitions on Discrete Grey Models	
		5.1.2 Relationship between Discrete Grey and GM(1,1) Models	
		5.1.3 Prediction Analysis of Completely Exponential Growths	
	5.2	Generalization and Optimization of Discrete Grey Models	
		5.2.1 Three Forms of Discrete Grey Models	156
		5.2.2 Impacts of Initial Values on Iterations	
		5.2.3 Optimization of Discrete Grey Models	
		5.2.4 Recurrence Functions for Optimizing Discrete Grey Models	
	5.3	Approximately Nonhomogeneous Exponential Growth	163
		Discrete Grey Models of Multi-variables	166
6	Cor	nbined Grey Models	169
	6.1	Grey Econometrics Models	169
		6.1.1 Determination of Variables Using Principles of	
		Grey Incidence	169
		6.1.2 Grey Econometrics Models	170
	6.2	Combined Grey Linear Regression Models	173
	6.3	Grey Cobb-Douglas Model	177
	6.4	Grey Artificial Neural Network Models	178
		6.4.1 BP Artificial Neural Model and Computational Schemes	178
		6.4.2 Principle and Method for Grey BP Neural Network	
		Modeling	179
	6.5	Grey Markov Model	181
		6.5.1 Grey Moving Probability Markov Model	
		6.5.2 Grey State Markov Model	
	6.6	Combined Grey-Rough Models	
		6.6.1 Rough Membership, Grey Membership and Grey Numbers	
		6.6.2 Grey Rough Approximation	187
		6.6.3 Combined Grey Clustering and Rough Set Model	190

XVIII Contents

7			dels for Decision Makingerent Approaches for Grey Decisions	
	7.1			
			Grey Target Decisions	
			Grey Incidence Decisions	
			Grey Development Decisions	
			Grey Cluster Decisions	
	7.2		sion Makings with Synthesized Targets	
	7.3	Multi	-attribute Intelligent Grey Target Decision Models	218
8	Gre		ne Models	225
	8.1		egic Game Models for Duopolies with Limited Rationality	
		and K	Inowledge	226
		8.1.1	Duopolistic Strategic Output-Making Models Based on	
			Empirically Ideal Production and Optimal Decision	
			Coefficients	226
		8.1.2	Concession Equilibrium of the Later Decision-Maker under	
			Nonstrategic Expansion Damping Conditions: Elimination	
			from the Market	230
		813	Damping Equilibrium of the Advanced Decision-Maker	
		0.1.5	under Strategic Expansion Damping Conditions: Giving Up	
			Some Market Share	233
		8.1.4	Damping Loss and Total Damping Cost for the First	.200
		0.1.4		
			Decision-Making Oligopoly to Completely Control	227
	0.0	4 37	the Market	
	8.2		w Situational Forward Induction Model	.244
		8.2.1	Weaknesses of Backward Induction, Central Mehod of	
			Equilibrium Analysis for Dynamic Games	.244
		8.2.2	Backward Derivation of Multi-Stage Dynamic Games'	
			Profits	.245
		8.2.3	Termination of Forward Induction of Multi-Stage	
			Dynamic Games and Guide Nash Equilibrium Analysis	.248
	8.3	Chain	Structure Model of Evolutionary Games of Industrial	
			omerations and Its Stability	.252
		8.3.1	Chained Evolutionary Game Model for the Development	
			of Industrial Agglomerations	.252
		8.3.2	Duplicated Dynamic Simulation for the Development	
			Process of Industrial Agglomerations	.255
		8.3.3	Stability Analysis for the Formation and Development	
		0.0.0	of Industrial Agglomerations	.257
9	Gre	y Con	trol Systems	259
	9.1		ollability and Observability of Grey Systems	
	9.2		fer Functions of Grey Systems	
			Grey Transfer Functions	

Contents XIX

			ansfer Functions of Typical Links	
			trices of Grey Transfer Functions	
	9.3		ability of Grey Systems	
			bust Stability of Grey Linear Systems	
			bust Stability of Grey Linear Time-Delay Systems	271
			bust Stability of Grey Stochastic Linear Time-Delay	
		Sy	stems	273
	9.4		ypical Grey Controls	
			ntrol with Abandonment	
		9.4.2 Co	ntrol of Grey Incidences	279
		9.4.3 Co	ntrol of Grey Predictions	280
10	Intr	oduction	to Grey Systems Modeling Software	287
	10.1		and Functions	
	10.2		omponents	
			on Guide	
			The Confirmation System	
			Using the Software Package	
			10.3.2.1 Entering Data	294
			10.3.2.2 Model Computations	295
A	Inte	rval Anal	ysis and Grey Systems Theory	303
	A.1	A Brief I	Historical Account of Interval Analysis	303
	A.2	Main Blo	ocks of Interval Analysis	304
		A.2.1 In	nterval Number System and Arithmetic	305
		A.2.2 In	nterval Functions, Sequences and Matrices	306
		A.2.3 II	nterval Newton Methods	308
		A.2.4 In	ntegration of Interval Functions	309
	Ref	erences		313
В	Δni	rnaches 4	of Uncertainty	315
U	B.1	Foundati	on for a Unified Information Theory	316
	D.1		rey Uncertainties	
		B12 S	tochastic Uncertainties	317
			Inascertainties	
			uzzy Uncertainties	
		B.1.5 R	Lough Uncertainties	318
		B.1.6 S	oros Reflexive Uncertainties	318
	B.2			
	B.1.6 Soros Reflexive Uncertainties B.2 Relevant Practical Uncertainties B.3 Some Final Words and Open Questions References			

XX Contents

C	Hov	w Uncertainties Appear: A General Systems Approach	325		
	C.1				
		C.1.1 Blown-Ups: Old Structures Replaced by New Ones	325		
		C.1.2 Mathematical Properties of Blown-Ups	327		
		C.1.3 The Problem of Quantitative Infinity			
		C.1.4 Eddy Motions of the General Dynamic System	329		
		C.1.5 Equal Quantitative Effects			
	C.2	The Systemic Yoyo Structure of General Systems	333		
		C.2.1 The Systemic Yoyo Model	333		
		C.2.2 Justification Using Conservation Law of Informational			
		Infrastructures	334		
		C.2.3 Justification Using Readily Repeatable Experiments	334		
	C.3	Laws on State of Motion of Systems			
		C.3.1 The Quark Structure of Systemic Yoyos			
		C.3.2 Interactions between Systemic Yoyos			
		C.3.3 Laws on State of Motion	340		
	C.4	Uncertainties Everywhere	343		
		C.4.1 Artificial and Physical Uncertainties	343		
		C.4.2 Uncertainties That Exist in the System of Modern			
		Mathematics			
		C.4.2.1 Uncertainties of Mathematics			
		C.4.2.2 Inconsistencies in the System of Mathematics	345		
	C.5	A Few Final Words	348		
	Refe	erences	348		
Re	feren	ices	351		
_	_				
Inc	iex	• • • • • • • • • • • • • • • • • • • •	373		