Contents

2			
· –	Theory	y	
	1.2.1	Multipolar Hamiltonian	
	1.2.2	A Molecule Interacting with a Nonuniform Near-Field	
	1.2.3	Near-Field Radiated from an Oscillating Dipole	
	1.2.4	Light-Matter Interaction in the Kohn-Sham DFT Approach	
.3	Computational Application		
	1.3.1	Time-Dependent Kohn-Sham Approach in Real Space	
.4	High-l	Harmonic-Generation Spectra Induced by the Near-Field	
	Excita	ution	
	1.4.1	Molecular System and Computations	
	1.4.2	Near-Field Excitation Dynamics	
	1.4.3	Even and Odd Harmonics	
	1.4.4	Control of Harmonic Generation by Interference	
	1.4.5	Concluding Remarks	
.5	Near-l	Field Induced Optical Force in a Metal Nanoparticle and C_{60}	
	1.5.1	Brief Review of Optical Force	
	1.5.2	Optical Force Exerted on a Particle	
	1.5.3	Model System and Computations	
	1.5.4	Optical Force on a Silver Nanoparticle	
	1.5.5	Optical Force on C_{60}	
	1.5.6	Concluding Remarks	
.6	Summ	nary	
Refe	rences		

	2.1	Basic	Optical Properties of Carbon Nanotube	33
		2.1.1	Structure of Carbon Nanotube	33
		2.1.2	Electronic Structure of Graphene	34
		2.1.3	Electronic Structure of Carbon Nanotube	35
		2.1.4	Optical Spectroscopy of Carbon Nanotubes	37
		2.1.5	Exciton State in Carbon Nanotubes	38
		2.1.6	Exciton Structures in Carbon Nanotubes	39
	2.2	Novel	Excitonic Properties of Carbon Nanotube	40
		2.2.1	Single Carbon Nanotube Spectroscopy for Revealing	
			Exciton Structures	40
		2.2.2	Singlet-Bright and -Dark Exciton Revealed by	
			Magneto-PL Spectroscopy	42
		2.2.3	Triplet and K-Momentum Dark Exciton States	45
		2.2.4	Exciton-Complex in Carbon Nanotubes	49
	2.3	Novel	Exciton Dynamics of Carbon Nanotube	52
		2.3.1	Exciton Relaxation Dynamics Between Bright and Dark	
			State	52
		2.3.2	Radiative Lifetime of Bright Exciton States	55
		2.3.3	Exciton-Exciton Interaction in Carbon Nanotube	60
		2.3.4	Multi-Exciton Generation in Carbon Nanotube	64
	2.4	Summ	nary	67
	Refe	erences		67
3	Fab	rication	1 of Ultrahigh-Density Self-assembled InAs Quantum	
3	Fab Dot	rication s by Str	n of Ultrahigh-Density Self-assembled InAs Quantum ain Compensation	71
3	Fab Dot Kou	ricatio r s by Str iichi Ak	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71
3	Fab Dot Kou 3.1	ricatio r s by Str ichi Ak Semic	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71
3	Fab Dot Kou 3.1	rication s by Str lichi Ak Semic 3.1.1	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73
3	Fab Dot Kou 3.1	rication s by Str ichi Ak Semic 3.1.1 3.1.2	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73
3	Fab Dot Kou 3.1	rication s by Str lichi Ak Semic 3.1.1 3.1.2	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73 75
3	Fab Dot Kou 3.1	rication s by Str lichi Ak Semic 3.1.1 3.1.2 3.1.3	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73 75 83
3	Fab Dot Kou 3.1	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73 75 83 95
3	Fab Dot Kou 3.1	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73 75 83 95 95
3	Fab Dot Kou 3.1 Refe	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73 75 83 95 95
3	Fab Dot: Kou 3.1 Refe Way Pro	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl cess and	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 75 83 95 95
3	Fab Dot Kou 3.1 Refe Way Pro Hiro	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengti cess and byasu Fo	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	71 71 73 75 83 95 95 95
3	Fab Dot Kou 3.1 Refe Wav Pro Hiro 4.1	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengti cess and by asu Fu Introd	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	711 711 733 755 833 955 955 977 977
3	Fab Dot Kou 3.1 Refe Wav Pro Hiro 4.1 4.2	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl cess an oyasu Fu Introd Multi-	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	711 713 755 833 955 955 977 977 988
3	Fab Dot: Kou 3.1 Refe Way Pro Hiro 4.1 4.2	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl cess and byasu Fu Introd Multi- 4.2.1	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	711 733 755 833 955 955 977 977 988 999
3	Fab Dot Kou 3.1 Refe Way Pro Hiro 4.1 4.2	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl cess and by asu Fu Introd Multi- 4.2.1 4.2.2	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	711 733 755 833 955 955 977 97 98 999 102
3	Fab Dot Kou 3.1 Refe Way Pro Hiro 4.1 4.2	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl cess and byasu Fo Introd Multi- 4.2.1 4.2.2 4.2.3	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	711 733 755 833 955 955 977 979 979 999 1022
3	Fab Dot Kou 3.1 Refe Wav Pro Hiro 4.1 4.2	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl cess and by asu Fu Introd Multi- 4.2.1 4.2.2 4.2.3	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	711 713 755 833 955 957 977 97 98 999 1022 1033
3	Fab Dot Kou 3.1 Refe Wav Pro Hiro 4.1 4.2	rication s by Str ichi Ak Semic 3.1.1 3.1.2 3.1.3 3.1.4 erences velengtl cess and oyasu Fu Introd Multi- 4.2.1 4.2.2 4.2.3	n of Ultrahigh-Density Self-assembled InAs Quantum rain Compensation	711 713 755 833 955 957 977 98 999 1022 1033 104

	4.3	Multi-	step Phonon-Assisted Process with Two Nondegenerate	100
		Beam		108
		4.3.1	Emitted Spectra Induced by Phonon-Assisted Process with	
			Nondegenerate Beams	109
		4.3.2	Excitation Intensity Dependence	111
		4.3.3	Dependence of the Difference in Polarization Angle	
			Between Two Nondegenerate Beams	114
	4.4	Application to Optical Pulse Shape Measurement		
		4.4.1	Experimental Setup	116
		4.4.2	Experimental Results	117
	4.5	Summ	nary	119
	Refe	erences		120
5	Mic Bioa Kaz	ro and analytic uma Ma	Extended-Nano Fluidics and Optics for Chemical and cal Technology	121
	Take	ehiko K	itamori	
	5.1	Introd	uction	121
	5.2	Techn	ology and Applications by Microfluidics	123
		5.2.1	Integration Methods	123
		5.2.2	Optical Detection Method for Single Molecule Detection .	127
		5.2.3	Applications	132
	5.3	Exten	ded-Nano Fluidics and Optics	136
		5.3.1	Introduction	136
		5.3.2	Optical Detection Methods	138
		5.3.3	Liquid and Optical Properties	147
		5.3.4	Applications	160
	5.4	Summ		162
	Refe	erences		162
Inc	lex			165
	•			