Contents

Preface

	•
page	X1

I MATRIX THEORY

1	Mat	rix Algebra	3
	1.1	Definitions and Notations	4
	1.2	Fundamental Matrix Operations	6
	1.3	Properties of Matrix Operations	18
	1.4	Block Matrix Operations	30
	1.5	Matrix Calculus	31
	1.6	Sparse Matrices	39
	1.7	Exercises	41
2	Solu	ition of Multiple Equations	54
	2.1	Gauss-Jordan Elimination	55
	2.2	LU Decomposition	59
	2.3	Direct Matrix Splitting	65
	2.4	Iterative Solution Methods	66
	2.5	Least-Squares Solution	71
	2.6	QR Decomposition	77
	2.7	Conjugate Gradient Method	78
	2.8	GMRES	79
	2.9	Newton's Method	80
	2.10	Enhanced Newton Methods via Line Search	82
	2.11	Exercises	86
3	Mat	rix Analysis	99
	3.1	Matrix Operators	100
	3.2	Eigenvalues and Eigenvectors	107
	3.3	Properties of Eigenvalues and Eigenvectors	113
	3.4	Schur Triangularization and Normal Matrices	116
	3.5	Diagonalization	117
	3.6	Jordan Canonical Form	118
	3.7	Functions of Square Matrices	120

Cont	tents
------	-------

3.8 Stability of Matrix Operators	124
3.9 Singular Value Decomposition	127
3.10 Polar Decomposition	132
3.11 Matrix Norms	135
3.12 Exercises	138

II VECTORS AND TENSORS

4	Ve	ctor and Tensor Algebra and Calculus	149
	4.1	Notations and Fundamental Operations	150
	4.2	Vector Algebra Based on Orthonormal Basis Vectors	154
	4.3	Tensor Algebra	157
	4.4	Matrix Representation of Vectors and Tensors	162
	4.5	Differential Operations for Vector Functions of One Variable	164
	4.6	Application to Position Vectors	165
	4.7	Differential Operations for Vector Fields	169
	4.8	Curvilinear Coordinate System: Cylindrical and Spherical	184
	4.9	Orthogonal Curvilinear Coordinates	189
	4.10	Exercises	196
5	Vec	tor Integral Theorems	204
	5.1	Green's Lemma	205
	5.2	Divergence Theorem	208
	5.3	Stokes' Theorem and Path Independence	210

5.4	Applications	215
5.5	Leibnitz Derivative Formula	224
5.6	Exercises	225

III ORDINARY DIFFERENTIAL EQUATIONS

6	Ana	alytical Solutions of Ordinary Differential Equations	235
	6.1	First-Order Ordinary Differential Equations	236
	6.2	Separable Forms via Similarity Transformations	238
	6.3	Exact Differential Equations via Integrating Factors	242
	6.4	Second-Order Ordinary Differential Equations	245
	6.5	Multiple Differential Equations	250
	6.6	Decoupled System Descriptions via Diagonalization	258
	6.7	Laplace Transform Methods	262
	6.8	Exercises	263
7	Nur	nerical Solution of Initial and Boundary Value Problems	273
	7.1	Euler Methods	274
	7.2	Runge Kutta Methods	276
	7.3	Multistep Methods	282
	7.4	Difference Equations and Stability	291
	7.5	Boundary Value Problems	299
	7.6	Differential Algebraic Equations	303
	7.7	Exercises	305

.

· · 21 · ·

8	Qualitative Analysis of Ordinary Differential Equations	311
	8.1 Existence and Uniqueness	312
	8.2 Autonomous Systems and Equilibrium Points	313
	8.3 Integral Curves, Phase Space, Flows, and Trajectories	314
	8.4 Lyapunov and Asymptotic Stability	317
	8.5 Phase-Plane Analysis of Linear Second-Order	
	Autonomous Systems	321
	8.6 Linearization Around Equilibrium Points	327
	8.7 Method of Lyapunov Functions	330
	8.8 Limit Cycles	332
	8.9 Bifurcation Analysis	340
	8.10 Exercises	340
9	Series Solutions of Linear Ordinary Differential Equations	347
	9.1 Power Series Solutions	347
	9.2 Legendre Equations	358
	9.3 Bessel Equations	363
	9.4 Properties and Identities of Bessel Functions and	
	Modified Bessel Functions	369
	9.5 Exercises	371
IV	PARTIAL DIFFERENTIAL EQUATIONS	
10	First-Order Partial Differential Equations and the Method of	
	Characteristics	379
	10.1 The Method of Characteristics	380
	10.2 Alternate Forms and General Solutions	387
	10.3 The Lagrange-Charpit Method	389
	10.4 Classification Based on Principal Parts	393
	10.5 Hyperbolic Systems of Equations	397
	10.6 Exercises	399
11	Linear Partial Differential Equations	405
	11.1 Linear Partial Differential Operator	406
	11.2 Reducible Linear Partial Differential Equations	408
	11.3 Method of Separation of Variables	411
	11.4 Nonhomogeneous Partial Differential Equations	431
	11.5 Similarity Transformations	439
	11.6 Exercises	443
12	Integral Transform Methods	450
	12.1 General Integral Transforms	451
	12.2 Fourier Transforms	452
	12.3 Solution of PDEs Using Fourier Transforms	459
	12.4 Laplace Transforms	464
	12.5 Solution of PDEs Using Laplace Transforms	474
	12.6 Method of Images	476
	12.7 Exercises	477

13 Finite Difference Methods	. 483
13.1 Finite Difference Approximations	484
13.2 Time-Independent Equations	491
13.3 Time-Dependent Equations	504
13.4 Stability Analysis	512
13.5 Exercises	519
14 Method of Finite Elements	523
14.1 The Weak Form	524
14.2 Triangular Finite Elements	527
14.3 Assembly of Finite Elements	533
14.4 Mesh Generation	539
14.5 Summary of Finite Element Method	541
14.6 Axisymmetric Case	546
14.7 Time-Dependent Systems	547
14.8 Exercises	552
Bibliography	B-1
Index	I-1
A Additional Details and Fortification for Chapter 1	561
A.1 Matrix Classes and Special Matrices	561
A.2 Motivation for Matrix Operations from Solution of Equations	568
A.3 Taylor Series Expansion	572
A.4 Proofs for Lemma and Theorems of Chapter 1	576
A.5 Positive Definite Matrices	586
B Additional Details and Fortification for Chapter 2	. 589
B.1 Gauss Jordan Elimination Algorithm	589
B.2 SVD to Determine Gauss-Jordan Matrices Q and W	594
B.3 Boolean Matrices and Reducible Matrices	595
B.4 Reduction of Matrix Bandwidth	600
B.5 Block LU Decomposition	602
B.6 Matrix Splitting: Diakoptic Method and Schur	
Complement Method	605
B.7 Linear Vector Algebra: Fundamental Concepts	611
B.8 Determination of Linear Independence of Functions	614
B.9 Gram-Schmidt Orthogonalization	616
B.10 Proofs for Lemma and Theorems in Chapter 2	617
B.11 Conjugate Gradient Algorithm	620
B.12 GMRES Algorithm	629
B.13 Enhanced-Newton Using Double-Dogleg Method	635
B.14 Nonlinear Least Squares via Levenberg-Marquardt	639
C Additional Details and Fortification for Chapter 3	644
C.1 Proofs of Lemmas and Theorems of Chapter 3	644
C.2 QR Method for Eigenvalue Calculations	649
C.3 Calculations for the Jordan Decomposition	655

	C.4 Schur Triangularization and SVD	658
	C.5 Sylvester's Matrix Theorem	659
	C.6 Danilevskii Method for Characteristic Polynomial	660
D	Additional Details and Fortification for Chapter 4	664
	D.1 Proofs of Identities of Differential Operators	664
	D.2 Derivation of Formulas in Cylindrical Coordinates	666
	D.3 Derivation of Formulas in Spherical Coordinates	669
E	Additional Details and Fortification for Chapter 5	673
	E.1 Line Integrals	673
	E.2 Surface Integrals	678
	E.3 Volume Integrals	684
	E.4 Gauss-Legendre Quadrature	687
	E.5 Proofs of Integral Theorems	691
F	Additional Details and Fortification for Chapter 6	700
	F.1 Supplemental Methods for Solving First-Order ODEs	700
	F.2 Singular Solutions	703
	F.3 Finite Series Solution of $d\mathbf{x}/dt = A\mathbf{x} + \mathbf{b}(t)$	705
	F.4 Proof for Lemmas and Theorems in Chapter 6	708
G	Additional Details and Fortification for Chapter 7	715
	G.1 Differential Equation Solvers in MATLAB	715
	G.2 Derivation of Fourth-Order Runge Kutta Method	718
	G.3 Adams-Bashforth Parameters	722
	G.4 Variable Step Sizes for BDF	723
	G.5 Error Control by Varying Step Size	724
	G.6 Proof of Solution of Difference Equation, Theorem 7.1	730
	G.7 Nonlinear Boundary Value Problems	731
	G.8 Ricatti Equation Method	734
Η	Additional Details and Fortification for Chapter 8	738
	H.1 Bifurcation Analysis	738
I	Additional Details and Fortification for Chapter 9	745
	I.1 Details on Series Solution of Second-Order Systems	745
	I.2 Method of Order Reduction	748
	I.3 Examples of Solution of Regular Singular Points	750
	I.4 Series Solution of Legendre Equations	753
	I.5 Series Solution of Bessel Equations	757
	I.6 Proofs for Lemmas and Theorems in Chapter 9	761
J	Additional Details and Fortification for Chapter 10	771
	J.1 Shocks and Rarefaction	771
	J.2 Classification of Second-Order Semilinear Equations: $n > 2$	781
	J.3 Classification of High-Order Semilinear Equations	784

Κ	Additional Details and Fortification for Chapter 11	786
	K.1 d'Alembert Solutions	786
	K.2 Proofs of Lemmas and Theorems in Chapter 11	791
L	Additional Details and Fortification for Chapter 12	795
	L.1 The Fast Fourier Transform	795
	L.2 Integration of Complex Functions	799
	L.3 Dirichlet Conditions and the Fourier Integral Theorem	819
	L.4 Brief Introduction to Distribution Theory and Delta Distributions	820
	L.5 Tempered Distributions and Fourier Transforms	830
	L.6 Supplemental Lemmas, Theorems, and Proofs	836
	L.7 More Examples of Laplace Transform Solutions	840
	L.8 Proofs of Theorems Used in Distribution Theory	846
Μ	Additional Details and Fortification for Chapter 13	851
	M.1 Method of Undetermined Coefficients for Finite	
	Difference Approximation of Mixed Partial Derivative	851
	M.2 Finite Difference Formulas for 3D Cases	852
	M.3 Finite Difference Solutions of Linear Hyperbolic Equations	855
	M.4 Alternating Direction Implicit (ADI) Schemes	863
Ν	Additional Details and Fortification for Chapter 14	867
	N.1 Convex Hull Algorithm	867
	N.2 Stabilization via Streamline-Upwind Petrov-Galerkin (SUPG)	870