CONTENTS

Preface

1 Introduction
1.1 High-frequency circuits in wireless, fiber-optic, and imaging systems
1.2 A brief history of high-frequency integrated circuits
1.3 What does the future hold?
1.4 The high-frequency IC design engineer
References

2 High-frequency and high-data-rate communication systems
2.1 Wireless and fiber-optic communication systems
2.2 Radio transceivers
2.3 Modulation techniques
2.4 Receiver architectures
2.5 Transmitter architectures
2.6 Receiver specification
2.7 Transmitter specification
2.8 Link budget
2.9 Phased arrays
2.10 Examples of other system applications
Summary
Problems
References

3 High-frequency linear noisy network analysis
3.1 Two-port and multi-port network parameters
3.2 Noise
3.3 Two-port and multi-port noise
3.4 Noise in circuits with negative feedback
Summary
Problems
References
4 High-frequency devices
4.1 High-frequency active devices 142
4.2 The nanoscale MOSFET 164
4.3 The heterojunction bipolar transistor 219
4.4 The high electron mobility transistor 254
4.5 High-frequency passive components 274
Summary 311
Problems 312
References 314

5 Circuit analysis techniques for high-frequency integrated circuits 318
5.1 Analog versus high-frequency circuit design 318
5.2 Impedance matching 321
5.3 Tuned circuit topologies and analysis techniques 335
5.4 Techniques to maximize bandwidth 342
5.5 Challenges in differential circuits at high frequency 356
5.6 Non-linear techniques 362
Summary 366
Problems 367
References 372

6 Tuned power amplifier design 374
What is a tuned power amplifier? 374
6.1 Tuned PA fundamentals 375
6.2 Classes of tuned PAs and the associated voltage waveforms 377
6.3 Linear modulation of PAs 400
6.4 Class A PA design methodology 401
6.5 Non-idealities in PAs 406
6.6 Implementation examples of CMOS and SiGe HBT mm-wave PAs 407
6.7 Efficiency enhancement techniques 416
6.8 Power combining techniques 425
Summary 432
Problems 432
References 436

7 Low-noise tuned amplifier design 439
7.1 LNA specification and figure of merit 439
7.2 Design goals for tuned LNAs 441
7.3 Low-noise design philosophy and theory 441
7.4 LNAs with inductive degeneration 449
7.5 Power-constrained CMOS LNA design 467
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6 Low-current CMOS inverter LNAs</td>
<td>469</td>
</tr>
<tr>
<td>7.7 Low-voltage LNA topologies</td>
<td>471</td>
</tr>
<tr>
<td>7.8 Other LNA topologies</td>
<td>473</td>
</tr>
<tr>
<td>7.9 Differential LNA design methodology</td>
<td>486</td>
</tr>
<tr>
<td>7.10 Process variation in tuned LNAs</td>
<td>486</td>
</tr>
<tr>
<td>7.11 Impact of temperature variation in tuned LNAs</td>
<td>488</td>
</tr>
<tr>
<td>7.12 Low-noise bias networks for LNAs</td>
<td>488</td>
</tr>
<tr>
<td>7.13 MOSFET layout in LNAs</td>
<td>490</td>
</tr>
<tr>
<td>Summary</td>
<td>491</td>
</tr>
<tr>
<td>Problems</td>
<td>491</td>
</tr>
<tr>
<td>References</td>
<td>501</td>
</tr>
</tbody>
</table>

8 Broadband low-noise and transimpedance amplifiers	503
8.1 Low-noise broadband high-speed digital receivers	503
8.2 Transimpedance amplifier specification	507
8.3 Transimpedance amplifier design	510
8.4 Other broadband low-noise amplifier topologies	535
8.5 DC offset compensation and VGA-TIA topologies	540
Summary	545
Problems	545
References	551

9 Mixers, switches, modulators, and other control circuits	553
9.1 Mixer fundamentals	553
9.2 Mixer specification	566
9.3 Mixer topologies	569
9.4 Design methodology for downconverters	586
9.5 Upconverter mixer design methodology	588
9.6 Examples of mm-wave Gilbert cell mixers	589
9.7 Image-reject and single-sideband mixer topologies	593
9.8 Mixer simulation	600
9.9 Switches, phase shifters, and modulators	600
9.10 Gilbert cell layout	613
Problems	615
References	618

10 Design of voltage-controlled oscillators	621
10.1 VCO fundamentals	621
10.2 Low-noise VCO topologies	638
11 High-speed digital logic

11.1 Systems using high-speed logic 699
11.2 High-speed digital logic families 705
11.3 Inductive peaking 721
11.4 Inductive broadbanding 724
11.5 Design methodology for maximum data rate 724
11.6 BiCMOS MOS-HBT logic 725
11.7 Pseudo-CML logic 729
11.8 Other bipolar, MOS and BiCMOS CML, and ECL gates 731
11.9 Dividers 734
11.10 CML/ECL gate layout techniques 741

Summary 747
Problems 748
References 753

12 High-speed digital output drivers with waveshape control

What is a high-speed digital output driver? 756
12.1 Types of high-speed drivers 757
12.2 Driver specification and FoMs 757
12.3 Driver architecture and building blocks 764
12.4 Output buffers 765
12.5 Predriver 781
12.6 Examples of distributed output drivers operating at 40Gb/s and beyond 787
12.7 High-speed DACs 795

Summary 799
Problems 799
References 801

13 SoC examples

What is a high-frequency SoC? 803
13.1 Design methodology for high-frequency SoCs 803
13.2 Transceiver architectures, packaging, and self-test for mm-wave radio, radar, and imaging sensors 812
13.3 60GHz phased array in SiGe BiCMOS versus 65nm CMOS 820
13.4 77GHz 4-channel automotive radar transceiver in SiGe HBT technology 830
13.5 70–80GHz active imager in SiGe HBT technology 835
13.6 150–168GHz active imaging transceiver with on-die antennas in SiGe BiCMOS technology 843
Summary 846
Problems 846
References 848

Appendix 1 Trigonometric identities 851
Appendix 2 Baseband binary data formats and analysis 852
Appendix 3 Linear matrix transformations 858
Appendix 4 Fourier series 861
Appendix 5 Exact noise analysis for a cascode amplifier with inductive degeneration 862
Appendix 6 Noise analysis of the common-emitter amplifier with transformer feedback 864
Appendix 7 Common-source amplifier with shunt-series transformer feedback 866
Appendix 8 HiCUM level 0 model for a SiGe HBT 868
Appendix 9 Technology parameters 869
Appendix 10 Analytical study of oscillator phase noise 876
Appendix 11 Physical constants 890
Appendix 12 Letter frequency bands 891
Index 892