Table of Contents

Preface	XIII
Conference organization	XV
Partners, Sponsors and Exhibitors	XVII
INVITED LECTURES	
The Influence of R&D on the Design, Construction and Damage Assessment of Large Cooling Towers <i>P. L. Gould</i>	3
Giga-Shells for Energy Generation: Natural Draft Cooling Towers and Solar Updraft Chimneys W. B. Krätzig	17
The Structural Reliability of Cooling Towers under Wind Hazard Considering Extreme Wind Statistics with an Upper Limit <i>HJ. Niemann, S. Diburg</i>	29
THERMODYNAMICS	
Evaluation of Natural Draft Wet Cooling Tower Performance Based on Numerical Aero-thermodynamic Analyses A. Haj Ayed, K. Kusterer, H. Strangfeld, T. Herinx	43
Cooling of Low-Temperature Power Plants – Challenges for the Example of Geothermal Binary Power Plants S. Frick, A. Saadat, S. Kranz	53
Selecting Optimum Combination of Wet and Heller Cooling Tower for Reduction of Wet Cooling Tower Make Up Water G. Ghezelasheghi	61

Plume Simulation of Natural Draught Cooling Towers K. Grasemann, F. Mohasseb, N. Wieners, G. Reymann	69
Interaction between Mechanical Parts and Structure on Cooling Towers <i>A. Hennecke</i>	75
CO ₂ Reduction by Cooling Tower Retrofit Measures F. Mohasseb, H. Stiens, G. Reymann, M. Braunsburger, J. Torkar	83
Development of a Spray System that Provides a Uniform Water Distribution with Minimal Pump Head D. Roux, H. Reuter	91
Development of Drop Breakup Devices for Enhancement of Cooling Tower Rain Zone Performance <i>R. Terblanche, H. Reuter</i>	99
Optimal <i>Legionella</i> Control for Cooling Towers using Biofilm Monitoring and Isothiazoline Dosing <i>L. P. Venhuis</i>	111
Determination of Efficacy of Applied Pre-Treatment and Cooling Water Treatment Programs for Industrial Cooling Tower Systems L. P. Venhuis	119
Potential of Improving of Efficiency and Savings of CO2 Emissions through Cold End Optimization of Existing Power Plants V. Vrangos, M. Roth	127
Investigation of Cooling Tower Thermodynamic Calculation in AP1000 Nuclear Power Units' Conventional Island L. Zhang, L. Tang, C. Yi, Z. Liu, H. Wu	135
WIND AND THERMAL ACTION	
Numerical Investigation of Interference Effects on Wind Pressure on a Group of Large Scale Cooling Towers <i>F. Cao, YJ. Ge, L. Zhao</i>	145
Aerodynamic and Aeroelastic Performance of Super-Large Cooling Tower based on Wind Tunnel Tests <i>YJ. Ge, L. Zhao</i>	153
Effects of Atmospheric and Operational Thermal Conditions on the Structural Integrity of Cooling Tower Shells <i>R. Harte, H. Reuter, R. Wörmann</i>	161

Local Stresses at Openings of Cooling Towers due to Wind Action <i>M. Simon, N. Herzog</i>	171
Fire Tests for the Packing Material for EDF H. Troncin	179
The Numerical Research on Fog Plume Diffusion from the Outlet of Cooling Towers at Inland AP1000 Nuclear Power Units L. Zhang, C. Yi, L. Tang, Z. Liu	185
Investigation of Surface Roughness and its Influence to Flow Dynamic Characteristics of Hyperbolic Cooling Tower L. Zhao, XX. Cheng, R. Dong, YJ. Ge	191
Extreme Value Estimation of Non-Gaussian Aerodynamic Series of Cooling Tower L. Zhao, ST. Ke, YJ. Ge	199
STRUCTURAL DESIGN	
Safety Analysis and Rehabilitation of a Natural Draft Cooling Tower at the Power Plant of Niederaußem F. Altmeyer, H. Scharf	209
Cooling Tower Practice in Different Countries with and without Consideration of VGB Guidelines <i>M. Andres, U. Eckstein, J. Peters, N.K. Suryanarayanan</i>	217
Numerical Studies on Cooling Tower Shells Made of Steel Fibre Modified Reinforced Concrete J. Bockhold	223
VGB Standards for RC Cooling Towers – Design, Construction and Maintenance <i>H. Eggers, J. Lenz, R. Meiswinkel</i>	231
Numerical Evaluation of Repaired Cooling Tower Shell after Damaging <i>T. Hara</i>	239
Performance-Based Evaluation of Steel Hyperbolic Cooling Towers using Diagonal Grid System <i>M. Izadi, K. Bargi</i>	247
Computer Aided Design of Natural Draft Cooling Towers – Own Tailored Software Design for Special Requirements C. Lang	255
Basic Design for Structure of Indirect Air Cooling Tower in Qinling Power Plant <i>Q. Li, P. Ren</i>	263

Influence of Cooling Tower Shell Shape on Structural Behaviour SY. Noh, R. Harte, SY. Lee	273
Technologies and Development of Object-Related Constructions for Cooling Tower Maintenance J. Teupe	283
Re-Recognition of the BSS Approach for Hyperboloidal Cooling Towers J.F. Zhang, ST. Ke, L. Zhao, YJ. Ge	291
SOIL-STRUCTURE-INTERACTION	
Structural Interaction between Cooling Towers and Subsoil Based on Executed Projects U. Eckstein, D. Placzek, R. Wörmann	301
Analysis of Ground Dynamical Response to Natural Draft Cooling Tower Collapse in Nuclear Power Plant. B. Limbourg, B. Grogna	311
Cracks and Steel Stresses in a Cooling Tower Caused by Settlements of Column Footings P. Noakowski, M. Breddermann, A. Harling, M. Rost	319
Investigation of the Impact of Differential Settlements on Cooling Tower Shells K. Stopp, R. Harte, B. Titze	329
Duisburg-Walsum Cooling Tower 10 – Foundation by Means of Driven Cast-in-Situ Concrete Piles and Vibro Stone Columns in Difficult Building Ground Conditions <i>H. Wolf, J. Bosenick</i>	337

CONCRETE TECHNOLOGY AND CONSTRUCTION METHODS

The Quality Control during the Construction of the Cooling Towers at the RWE Power Stations <i>D. Busch, J. Meyer, U. Ohlmann</i>	349	
5D Digital Construction Process: the Use of BIM in Construction Processes K. Kessoudis	357	
Cooling Tower Belchatow – Construction Aspects M. Kociniak	363	

Performance of Concrete with Increased Acid Resistance for Natural Draught Cooling Towers C. Rieck, R. Hüttl, D. Busch	371
Concrete Repair on Natural Draft Cooling Towers H. Stahl	379
LIFE-TIME-MANAGEMENT	
Statistical Analysis of the Load Carrying Capacity of Natural Draught Cooling Towers <i>M. A. Ahrens, J. Bockhold</i>	389
Monitoring of Reinforced Concrete Draught Cooling Towers as a Guide for Maintenance and Repair Strategy A. Courtois, Y. Genest	397
Probabilistic Approaches for Lifetime Management of Cooling Towers - Benefits & Challenges J. Gerlach, L. Lohaus	407
Life Cycle Management of Cooling Towers: Monitoring, Documentation, Simulation <i>T. Pfister, A. Rabe, N. Fickler, J. Meyer</i>	417
SCANSITES 3D [®] : the Method to Fingerprint the Structural Health of Cooling Towers S. Piot, H. Lançon, G. Camp, P. Carreaud	425
MAINTENANCE AND REPAIR	
Fitness Study of Degraded Cooling Towers under Additional Wind Interference due to New Power Plant Buildings M. Andres, R. Harte, N. Hölscher, HJ. Niemann, M. Tschersich	437
Overloading, Failure & Rehabilitation of an FGD Exhaust Duct Support <i>M. Angelides</i>	447
Protection of the Surface Zone of Concrete Structures by Using Capillary Transported Hydrophobic Fluids S. Bruder, H. Lehmann	455
Carbon Fiber Reinforced Shotcrete F. Eberth	463
Prognosis Model on Deterioration and Damage of Shell Insides under FGD and about Adapted Protection Measures <i>H. Eisenkrein</i>	469

Continuous Measuring of Moving Crack Width of Severing Meridian Cracks in Cooling Tower Shells Caused by External Influences H. Eisenkrein, R. Engelfried, A. Dorge, R. Wörmann	477
Polymer-Coated Cooling Tower Shell Insides with Vertical Flue Gas Inlet Low Level. Status Analysis and Refurbishment after 15 Years of Operational and Environmental Impacts <i>R. Engelfried, M. Graf, H. Eisenkrein</i>	485
AGENDA 2030: Ploymer-Coated Insides of 14 Natural Draught Cooling Towers with Horizontal Flue Gas Inlet Low Level – Monitoring System to Ensure a Long Term Operational Time <i>R. Engelfried, U. Siegert, H. Eisenkrein</i>	495
Material Related Status quo Analysis of the Concrete of a Cooling Tower in Normal Operation with the Aim to Predict the Long Term Behaviour <i>R. Engelfried, P. Vögtlin, H. Eisenkrein</i>	503
The Long-Term Protection of Interior Shells of Cooling Towers with Respect to Today's Challenges and Future Developments <i>P. Heine, R. Martin, H. Schwarze</i>	513
Assessment and Repair of Delaminated Concrete Mantles to Cooling Towers in the East Midlands, England <i>B. Knight</i>	521
Use of an Electrochemical Method Coupled with Ground Penetrating Radar for the Detection of Corrosion of Reinforced Concrete on Cooling Towers <i>ME. Mitzithra, F. Deby, S. Laurens, J. Salin, P. Stephan, A. de Chillaz, D. François, G. Moreau, J. P. Balayssac</i>	529
Steps to Automation of Cooling Tower Monitoring L. Petersen, L. Lohaus, B. Titze	539
Structural Repairs to Hyperbolic Cooling Tower and Access Issues D. Smith, A. Kelly	547
HYBRID COOLING TOWER MOORBURG	
Challenges in the Planning and Implementation Concerning the Creation of the Moorburg Hybrid Cooling Tower <i>R. Haupt, L. Emde, A. Rabe</i>	555
Structural Calculation of Hybrid Cooling Towers S. Höhler, T. Vossen, D. Lehnen	567
Notice of Approval for the Power Plant Moorburg: The Birth of the Hybrid Cooling Tower S. Meyer, B. Titze	575

Buffeting Wind Load, Wind Load Effects and Equivalent Static Wind Pressures for the Design of Hybrid Cooling Towers <i>HJ. Niemann, N. Hölscher, W. Hubert</i>	583
Hybrid CT Moorburg - A Challenge in Design and Execution J. Peters, F. Bouton, N. Zalewski	595
FUTURE DEVELOPMENTS	
Hybrid Natural Draft Steel Cooling Tower for Geothermal Power Plant Applications Z. Guan, Z. Zou, H. Gurgenci	607
Solar Updraft Towers: the Latest Wind Tunnel Results and the Current Comparative Studies <i>F. Lupi, C. Borri, HJ. Niemann</i>	617

The 16th IAHR Cooling Tower and Air-Cooled Heat Exchanger Conference627PresentationA. Piatruchyk

Author Index

633