Contents

Editors		XV
List of Contributors		xvii
	hy do we need Solutions to Global Warming? In E. Thornes and Francis D. Pope	1
1	Introduction – Life and the Evolution of the Earth's Atmosphere	2
2	The Atmosphere – The Most Valuable Resource on the Planet	3
3	The Greenhouse Effect and Global Warming	6
4	What is Geoengineering?	12
	4.1 Introduction	12
	4.2 Are there Parallels to Climate Change and Geoengineering?	15
	4.3 Scientific Respectability of Geoengineering	16
	4.4 The Arguments for and against Geoengineering Research	17
5	_ ···· j ···· ·· _ ··· ·· ·· ··· ·· ··· ·	20
Re	ferences	20
Sto	oring Carbon for Geologically Long Timescales to Engineer	
	imate	22
R.	Stuart Haszeldine and Vivian Scott	
1	Why is Carbon Storage Necessary?	23
2	The Approach and Controlling Factors	24
3	Methods of Reduced Emission Rates	26
4	Principles of Carbon Dioxide Removal (Negative Emissions	
	Technologies)	27
5	Life-cycle Assessments	27
6	Biomass Availability and Sustainability	28
7	Carbon Dioxide Storage Availability	28
	-	

8	Summary of	Carbon Storage Methods	32
		d Terrestrial Biomass: Afforestation	32
	8.2 Increase	d Soil Biomass: Biochar	33
	8.3 Biomass	Energy with Carbon Capture and Storage (BECCS)	34
		Burial, Carbon Dioxide Use and Algal Carbon	
	Dioxide		35
		ir Čapture	36
		Weathering	38
		al Feedstock	39
	8.8 Carbon	Dioxide for Enhanced Oil Recovery (CO2-EOR)	39
		a Sediments	40
9	Discussion		41
10	Conclusions		45
Acl	nowledgement	S	46
	erences		46
	_		
Th	e Global Potent	tial for Carbon Dioxide Removal	52
Tin	iothy M. Lenton	1	
1	Introduction		53
2	Plant-based CI)R	56
-	2.1 Resource		56
		ion and Reforestation	57
		v Crop Supplies	58
	ÚV	l Biomass Supplies	59
		on Routes and Efficiencies	59
		d CDR Potential	60
3	Algal-based CI		62
	3.1 Resource		63
	3.2 Algal BEC		63
	3.3 Ocean Fe		64
	3.4 Combine	d CDR Potential	67
4	Alkalinity-base	d CDR	68
	•	l Weathering – Land	68
		l Weathering – Ocean	69
		· Capture (DAC)	69
		d CDR Potential	70
5	Overall CDR F	ux Potential	71
6	Discussion		72
Ref	erences		74
			, 1
The	e Use of Artifici	al Trees	80
Kla	us S. Lackner		

1 Introduction

х

Contents		xi
2	Air Capture as an Engineering and Policy	
	Challenge	82
3	An Example of an Air Capture Technology	83
4	Cost Issues	88
5	What Price can Air Capture Technology	
	Deliver?	89
6	The Usefulness of Air Capture Technology	92
Č.	6.1 Carbon Capture from Air and Storage	92
	6.2 Fugitive Emissions	93
	6.3 Risk Management to Oil Resource Holders	94
	6.4 Managing the Risks of Global Warming	94
	6.5 Air Capture as a Tool for Geoengineering	95
	6.6 Closing the Non-fossil Carbon Cycle	95
7		97
Ac	cknowledgements	101
Re	eferences	101
Co	ooling the Earth with Crops	105
	araka Davies-Barnard	
1	Introduction	105
2	Mechanisms	106
	2.1 Biogeophysical Mechanisms	107
	2.1.1 Albedo	107
	2.1.2 Evapotranspiration	108
	2.1.3 Emissivity	108
	2.1.4 The Aerodynamic Roughness	108
3		109
	3.1 Tropics	109
	3.2 Temperate and Boreal	110
4	6	111
5	Future Land Cover Change	113
6	Increased Crop Albedo	115
	6.1 Albedo Values of Crops	115
	6.2 Determinants of Albedo	116
	6.3 Leaf Level Albedo	116
	6.4 Canopy Level Albedo	118
7	Simulations with Climate Models	120
	7.1 Crops in Climate Models	120
_	7.2 Climate Impacts	122
8	Yields	122
9	Other Crop Cooling Potential	124
	9.1 Soil Carbon Sequestration	124
	9.2 Biofuels	124

xii		Contents
10	Priorities for Future Work	125
11	Conclusions	125
Re	ferences	126
	gineering Ideas for Brighter Clouds	131
Ste	phen H. Salter, Thomas Stevenson and Andreas Tsiamis	
1	Introduction	132
2	A Reminder of the Physics	132
3	•	134
	3.1 Spray Generation	134
4		138
5	Filtration	140
6	Vessel Design	143
7	Justification of the Trimaran Configuration	146
8		151
9		154
10	Costs	156
11	Conclusions	159
Ac	knowledgements	159
	ferences	160
	ratospheric Aerosol Geoengineering	162
Alc	an Robock	
1	Introduction	163
2	How to Create a Stratospheric Cloud	164
	2.1 Why the Stratosphere?	164
	2.2 Means of Stratospheric Injection	165
	2.3 Creating an Effective Sulfuric Acid Cloud	167
3	Climate Impacts of Stratospheric Geoengineering	168
	3.1 Climate Models	168
	3.2 Scenarios of Geoengineering	169
	3.3 Global and Regional Temperature Impacts	171
	3.4 Global and Regional Precipitation and Monsoon	173
	Impacts 3.5 Impacts of Enhanced Diffuse Radiation	173
4	Ethics and Governance of Stratospheric Geoengineering	170
7	4.1 Ethics and Governance of Research	177
	4.2 Ethics and Governance of Deployment	179
5	Benefits and Risks of Stratospheric Geoengineering	180
	knowledgments	182
References		182
		100

Cor	itents	xiii
Spa	ce-Based Geoengineering Solutions	186
-	in R. McInnes, Russell Bewick and Joan Pau Sanchez	
1	Introduction	186
2	Space-based Geoengineering	187
3	Lagrange Point Occulting Disks	190
	3.1 Occulting Solar Disks	190
	3.2 Occulter Orbit	190
	3.3 Occulter Sizing	192
4	Lagrange Point Dust Cloud	
	4.1 Dissipating Dust Cloud	195
	4.1.1 Solar Radiation Pressure	197
	4.1.2 Dust Cloud Attenuation	198
	4.1.3 Insolation Reduction	199
	4.2 Anchored Dust Cloud	200
	4.2.1 Four-body Problem	200 201
	4.2.2 Zero Velocity Curve4.2.3 Effect on Solar Insolation	201
5		205
5	Disks	204
	5.1 GREB Climate Models	204
	5.2 Out-of-plane Occulter	204
	5.3 Optimal Orbiting Disk	208
6	Conclusions	210
-	rences	210
iter		210
	ar Radiation Management and the Governance of Hubris	212
Ric	hard Owen	
1	Introduction: Hubris, Piety and the Limits of Human	
	Governance	213
2	SRM as Political Artefact	219
3	SRM Research and Attempts to Legitimate it as an Object of	
	Governance	221
	3.1 The Royal Society 2009 Report	221
	3.2 Development of Normative Principles for Governing SRM	
	Research	225
	3.3 The Solar Radiation Management Governance Initiative	
	(SRMGI)	228
	3.4 Thresholds and 'Differentiated Governance'	229
4	From Saying to Doing: Governing SRM Research within a	
_	Framework for Responsible Innovation	231
5	A Social Licence to Operate?	236
	5.1 Conditionality and Implausibility	238

xiv	Contents
6 Conclusions: Governing a New End of History?	239
Appendix	242
Acknowledgments	243
References	243
Subject Index	249