Preface xiii
Selected Readings xvii
PART ONE PROBLEMS, DATA, AND PROBABILITY MODELS
1 Some Simple Data Analysis 3
1-1 Errors in Estimation and Prediction-Why we predict the way we do 3
1-2 Absolute-error, Mean-squared Error, Zero-one, and Threshold Loss-Alittle theory applied to some data 6
1-3 Robustness of Loss Functions-Some estimates are good even if we are uncertain of consequences 13
1-4 Inferring Population Characteristics from Sample Data-Looking beyond our present data 15
1-5 The Estimation and Comparison of Means and Standard Deviations-Just a suggestion that there is often some available background information 16
1-6 Prediction with Many Variables-Some pretty clear evidence that the use of background information is necessary 18
1-7 Exercises 22
2 Analysis of Categorized Data 23
2-1 Contingency and Expectancy Tables-Simple but useful tools 23
2-2 The Use of Expectancy Tables in Guidance-A little care goes a long way 32
2-3 Double-Entry Expectancy Tables-A lot of care required here 37
2-4 Exercises 42
3 Probability Models 44
3-1 Probability Measures-The mathematical entity and its meanings in the real world 45
3-2 Conditional Probability-The heart of all statistical inference 47
3-3 Independence-A very careful look at just what this means 55
3-4 Random Variables-A few symbols carrying much information 57
3-5 Joint Distributions-Another feature of contingency tables 67
3-6 Bayes' Theorem for Random Variables-A first look 70
3-7 Exercises 73
4 Regression and Correlation with Application to the Estimation of Ability 75
4-1 The Algebra of Expectations-A careful look at means and variances in subpopulations 75
4-2 Regression Functions and Correlation Ratios-A short introduction to a general method of prediction 81
4-3 Linear Regression and Correlation Coefficients-A closer look at a simpler method 82
4-4 The Concept of Error-The data show that there are many sources of error 85
4-5 The Basic Relations of the Classical Test Theory Model-The variability and unreliability of human response 87
4-6 Expressing Parameters of Unobservables in Terms of Parameters of Observables-Some interesting and useful equations 89
4-7 The Estimation of True-Score-Truman Kelley was using Bayesian methods 50 years ago, but neither he nor his successors realized it 93
4-8 Exercises 96
PART TWO ELEMENTARY BAYESIAN METHODS
5 Bayesian Analysis of Binary Data 99
5-1 Binary Data-The analysis of two-category data 99
5-2 The Binomial Model-The binomial distribution 100
5-3 Numerical Values for Binomial Probabilities-Tables and approximations 103
5-4 Inference for the Binomial Model-The simplest example of Bayesian inference 107
5-5 Point and Interval Estimates of a Binomial Parameter-A close look at posterior distributions 113
5-6 Exercises 126
6 The Logical Basis of Bayesian Inference 128
6-1 Bayes' Theorem for Several Parameters-A more general form for Bayes' theorem 128
6-2 Model Density, Likelihood, Sufficient Statistics-Some tools for organizing the analysis 129
6-3 Prior and Posterior Bayes' Densities, Natural Conjugate Distributions- When appropriate, the latter make Bayesian analysis very easy 136
6-4 Predictive Densities-Neglected tools 141
6-5 Belief Probabilities: Subjective and Logical-How to write down your prior distribution 144
6-6 Some Notes on Logical Probability-A usable, if imperfect zero point* 154
6-7 A Worked Example of Bayesian Beta-binomial Analysis-Step-by-step, from specifying the prior to analyzing the posterior 156
6.8 Computer-assisted Data Analysis-Beta-binomial analysis 160
6-9 Case Studies in Beta-binomial Analysis 170
6-10 Exercises 182
7 Bayesian Inference for the Normal Model 183
7-1 Review of the Known-variance Model-A review with an elaboration of some further details 184
7-2 The Chi-square Distribution-A distribution needed soon 186
7-3 The Inverse Chi-square and Inverse Chi Distributions-Further distributions needed soon 188
7-4 The Normal Model with Known Mean and Unknown Variance- Assessing the accuracy of measuring instruments 197
7-5 Student's Distribution-A generalized form 204
7-6 The Normal Model with Unknown Mean and Variance-Method and applications 206
7-7 Quantification of Prior Information-lt can be done 212
7-8 Computer-assisted Data Analysis-The Two-parameter Normal Model 217
7-9 Two-parameter Normal Analysis-The General Form 223
7-10 Comparison of the Results for the Various Models-Some useful insights* 226
7-11 Two Important Distributional Results-Have a look at these if you are interested in the mathematics supporting our methods* 228
7-12 Case Studies in Normal Analysis 229
7-13 Exercises 237
PART THREE BAYESIAN METHODS FOR COMPARING PARAMETERS
8 Bayesian Inference for Two Normal Distributions 243
8-1 Comparison of Two Normal Means-The workhorse statistical analysis 243
8-2 Comparison of Two Normal Variances-An infrequently used technique 255
8-3 Case Studies in Normal Analysis-Comparisons in Two Populations 263
8-4 Exercises 275
9 Regression and the Bivariate Normal Model 278
9-1 The Linear-regression Model 279
9-2 Correlation in the Bivariate Normal Model 295
9-3 The Difference between Means of Correlated Pairs of Observations-A method for estimating change 305
9-4 Estimation and Comparison of a Set of Normal Means-A glimpse at "modern" methods of simultaneous estimation 308
9-5 Classical Test Theory and the Estimation of Many Means--This "modern" method has a long history 312
9-6 Regressed Estimates of Error Variances and Means-A meaningful refinement 318
10 Further Bayesian Analysis of Discrete Data 323
10-1 Inferences about Proportions Using the Arcsine Transformation- Stabilized variances with small sample sizes 324
10-2 The Log-odds Transformation-Normality for moderate size samples 328
10-3 The Poisson Approximation-Useful with very small or very large proportions and large samples 330
10-4 The Normal Approximation-Useful with moderate size proportions and large samples 335
10-5 Direct Methods of Comparing Binomial Proportions-A simple technique if you have the right computer program 338
10-6 A Summary of Bayesian Methods for Binary Data 342
19.7 Bayesian Analysis of the Multicategory Model-Surprisingly simple and extremely useful 344
10-8 Regressed Estimates of Proportions-A simple method of "smoothing" contingency tables 351
10-9 A Smoothing of a Contingency Table 353
Appendix Contents 359
Appendix
Statistical Tables 361
Index 453

