1.1. Die Anfänge der Atomtheorie 1.1.1. Allgemeine chemische Grundgesetze 1.1.2. Die Daltonsche Atomhypothese 1.1.3. Die Gesetze von Gay-Lussac und At 1.1.4. Die Definition des Mols 1.1.5. Versuche zur Ordnung der Elemente 1.1.6. Mendelejews Periodensystem 1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und Et 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von a-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	rundgesetze ypothese yssac und Avogadro er Elemente ystem toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen chen z den der Kernreaktionen	Entwicklung der physikalischen Chemie und ihre Aufgaben	C
1.1.1. Allgemeine chemische Grundgesetze 1.1.2. Die Daltonsche Atomhypothese 1.1.3. Die Gesetze von Gay-Lussac und As 1.1.4. Die Definition des Mols 1.1.5. Versuche zur Ordnung der Elemente 1.1.6. Mendelejews Periodensystem 1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und F 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	rundgesetze ypothese ssac und Avogadro er Elemente ystem toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen chen z den der Kernreaktionen	Atomtheorie und Atombau	
1.1.2. Die Daltonsche Atomhypothese 1.1.3. Die Gesetze von Gay-Lussac und At 1.1.4. Die Definition des Mols 1.1.5. Versuche zur Ordnung der Elemente 1.1.6. Mendelejews Periodensystem 1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und Et 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	er Elemente ystem toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen chen z	1.1. Die Anfänge der Atomtheorie	
1.1.3. Die Gesetze von GAY-Lussac und A 1.1.4. Die Definition des Mols 1.1.5. Versuche zur Ordnung der Elemente 1.1.6. Mendelejews Periodensystem 1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und E 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	er Elemente ystem toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen	1.1.1. Allgemeine chemische Grundgesetze	
1.1.4. Die Definition des Mols 1.1.5. Versuche zur Ordnung der Elemente 1.1.6. Mendelejews Periodensystem 1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und E 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und E 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	er Elemente ystem toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte seendefekt sotopen	1.1.2. Die Daltonsche Atomhypothese	
1.1.5. Versuche zur Ordnung der Elemente 1.1.6. Mendelejews Periodensystem 1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und E 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	er Elemente ystem toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen chen z ät n der Kernreaktionen	1.1.3. Die Gesetze von GAY-LUSSAC und AVOGADRO	
1.1.6. Mendelejews Periodensystem 1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und E 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und i 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	ystem toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen	1.1.4. Die Definition des Mols	
1.2. Das Elektron 1.2.1. Beziehungen zwischen Stoffen und E 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moselbysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernry 1.5.6. Die Uranspaltung	toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen chen z t n der Kernreaktionen	1.1.5. Versuche zur Ordnung der Elemente	
1.2.1. Beziehungen zwischen Stoffen und E 1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und i 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moselbysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	toffen und Elektrizität ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte ssendefekt sotopen	1.1.6. Mendelejews Periodensystem	
1.2.2. Die Entdeckung des Elektrons 1.2.3. Die Ladung des Elektrons 1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von a-Teilchen 1.5.2. Das Moselbysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	ktrons ns dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte seendefekt sotopen chen z ät n der Kernreaktionen	1.2. Das Elektron	
1.2.3. Die Ladung des Elektrons 1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von a-Teilchen 1.5.2. Das Moselbysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte seendefekt sotopen chen z ät n der Kernreaktionen	1.2.1. Beziehungen zwischen Stoffen und Elektrizität	
1.3. Natürliche Radioaktivität 1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und in 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von a-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte seendefekt sotopen chen z	1.2.2. Die Entdeckung des Elektrons	
1.3.1. Die Entdeckung der Radioaktivität 1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	dioaktivität ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte sotopen chen z	1.2.3. Die Ladung des Elektrons	
1.3.2. Die Natur der radioaktiven Strahlur 1.3.3. Spontane Atomumwandlungen und i 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von a-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	ven Strahlung lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte seendefekt sotopen chen z	1.3. Natürliche Radioaktivität	
1.3.3. Spontane Atomumwandlungen und 1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von \(\alpha\)-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. K\(\alpha\) nstliche Radioaktivit\(\alpha\) t 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	lungen und radioaktive Zerfallsreihen z e den zum Nachweis von Isotopen a der Atomgewichte seendefekt sotopen chen z ät n der Kernreaktionen	1.3.1. Die Entdeckung der Radioaktivität	
1.4. Die Isotopie 1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	z e den zum Nachweis von Isotopen a der Atomgewichte sendefekt sotopen chen z	1.3.2. Die Natur der radioaktiven Strahlung	
1.4.1. Das Verschiebungsgesetz 1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	z e den zum Nachweis von Isotopen a der Atomgewichte sendefekt sotopen chen z	1.3.3. Spontane Atomumwandlungen und radioaktive Zerfallsreihen	
1.4.2. Die Massenspektroskopie 1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	den zum Nachweis von Isotopen a der Atomgewichte sendefekt sotopen chen z	1.4. Die Isotopie	
1.4.3. Spektroskopische Methoden zum Na 1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	den zum Nachweis von Isotopen a der Atomgewichte sendefekt sotopen chen z	1.4.1. Das Verschiebungsgesetz	
1.4.4. Die Kohlenstoff-12-Skala der Atomg 1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	a der Atomgewichte sendefekt sotopen chen z ät n der Kernreaktionen	1.4.2. Die Massenspektroskopie	
1.4.5. Die natürlichen Nuklide 1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	sendefekt sotopen chen z ät n der Kernreaktionen	1.4.3. Spektroskopische Methoden zum Nachweis von Isotopen	
1.4.6. Packungsanteil und Massendefekt 1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	sendefekt sotopen chen z ät n der Kernreaktionen	1.4.4. Die Kohlenstoff-12-Skala der Atomgewichte	
1.4.7. Die Anreicherung von Isotopen 1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernrent.5.6. Die Uranspaltung	chenz z ät n der Kernreaktionen	1.4.5. Die natürlichen Nuklide	
1.4.8. Deuterium 1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moselbysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	chenz zät	1.4.6. Packungsanteil und Massendefekt	
1.5. Der Atomkern 1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernre 1.5.6. Die Uranspaltung	chen	1.4.7. Die Anreicherung von Isotopen	
1.5.1. Die Streuung von α-Teilchen 1.5.2. Das Moskleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernr 1.5.6. Die Uranspaltung	chenz z	1.4.8. Deuterium	
1.5.2. Das Moseleysche Gesetz 1.5.3. Kernreaktionen 1.5.4. Künstliche Radioaktivität 1.5.5. Die verschiedenen Typen der Kernr 1.5.6. Die Uranspaltung	ät	1.5. Der Atomkern	
1.5.3. Kernreaktionen	ät	1.5.1. Die Streuung von a-Teilchen	
1.5.4. Künstliche Radioaktivität	ät	1.5.2. Das Moseleysche Gesetz	
1.5.5. Die verschiedenen Typen der Kernr 1.5.6. Die Uranspaltung	n der Kernreaktionen	1.5.3. Kernreaktionen	
1.5.6. Die Uranspaltung		1.5.4. Künstliche Radioaktivität	
1.5.0. Die Uranspaltung		1.5.5. Die verschiedenen Typen der Kernreaktionen	
		1.5.6. Die Uranspaltung	
1.5./. Kernreaktoren		1.5.7. Kernreaktoren	
		1.5.8. Thermonukleare Reaktionen	
1.0. Der quantenhafte Energieaustausch der At		1.6.1. Das Planetenmodell des Atoms	
1.6. Der quantenhafte Energieaustausch der At 1.6.1. Das Planetenmodell des Atoms	Atoms		

1.6.3. Die Grundlagen der Quantentheorie	84
1.6.4. Photonen	86
1.6.5. Die Atomspektren	89
1.6.6. Die Bohnschen Postulate	90
1.6.7. Das Bohnsche Modell des Wasserstoffatoms	92
1.6.8. Die Spektralserien des ionisierten Heliums	98
1.7. Der Aufbau der Elektronenhüllen	99
1.7.1. Die Röntgenspektren	99
1.7.2. Die optischen Spektren der Alkalimetalle	102
1.7.3. Erweiterungen der Bourschen Theorie	
1.7.4. Die Nebenquantenzahl	
1.7.5. Die magnetische Quantenzahl	110
1.7.6. Der Elektronenspin	112
1.7.7. Der Kernspin	
1.7.8. Das Pauli-Prinzip	
1.7.9. Der periodische Aufbau der Elektronenhüllen	116
1.7.10. Die Multiplizität der Terme und ihre Symbolik	
1.7.11. Die Periodizität der Ionisierungsenergien	
1.7.12. Die Elektronenaffinität	
1.8. Grundzüge der Wellenmechanik	
1.8.1. Der Welle-Korpuskel-Dualismus	124
1.8.2. Die Schrödinger-Gleichung	
1.8.3. Die kräftefreie Bewegung eines Teilchens in einem begrenzten Raum	129
1.8.4. Die kräftefreie Bewegung eines Teilchens auf einer Kugeloberfläche	132
1.8.5. Der lineare harmonische Oszillator	137
1.8.6. Das Wasserstoffatom	141
1.8.7. Atome mit mehreren Elektronen; die Einelektronen-Näherung	149
2. Die chemische Bindung	153
2.0.1. Einleitung	
2.1. Die verschiedenen Arten der Bindung	104
2.1.1. Die Elektrovalenz (heteropolare Bindung)	154
2.1.2. Die Kovalenz (homöopolare Bindung)	155
2.1.3. Die Polaritat der Rovalenten bindung	157 160
2.1.5. Wasserstoffbrücken	
2.2. Intramolekulare Elektronenverschiebungen	167
2.2.1. Übersicht	167
2.2.2. Der induktive Effekt	167
2.2.3. Der induktomere Effekt	169
2.2.4. Der elektromere Effekt	169
2.2.5. Der mesomere Effekt	170
2.3. Die wellenmechanische Deutung der chemischen Bindung	175
2.3.1. Das Wasserstoffmolekül	175
2.3.2. Die Bindungen in komplizierteren Molekülen	183
2.3.3. Die chemische Bindung in Kristallen	187
2. Die Aggregataustände der Stelle	
3. Die Aggregatzustände der Stoffe	
	192
3.0.1. Charakteristik der einzelnen Aggregatzustände	192
3.1, Ideale Gase	192
3.0.1. Charakteristik der einzelnen Aggregatzustände	192

	Inhaltsverzeichnis	XIII
	3.1.2. Molmasse und Gasdichte 3.1.3. Die Bestimmung der Molmasse von Flüssigkeiten 3.1.4. Anomale Dichten 3.1.5. Das Daltonsche Gesetz 3.1.6. Die mittlere Molmasse einer Gasmischung 3.1.7. Das Grahamsche Gesetz	. 200 . 203 . 205 . 207 . 207
3.2.	Der I. Hauptsatz der Thermodynamik 3.2.1. Die innere Energie 3.2.2. Die Abhängigkeit der inneren Energie eines idealen Gases vom Volumer und vom Druck 3.2.3. Reversible isotherme Zustandsänderungen eines idealen Gases	. 208 . 211 . 213 r . 214
	3.2.5. Die Enthalpie	. 218
3.3.	Die kinetische Theorie der idealen Gase	. 220 . 224 . 228
	Moleküle	ı-
3.4.	Reale Gase 3.4.1. Abweichungen vom Boyle-Mariotteschen Gesetz 3.4.2. Der Joule-Thomson-Effekt 3.4.3. Die van der Waalssche Gleichung 3.4.4. Die Verflüssigung der Gase 3.4.5. Die Bestimmung der kritischen Konstanten 3.4.6. Der Zusammenhang der kritischen und der van der Waalsschen Konstanten	. 242 . 244 . 245 . 249 . 251
	stanten	. 255
3.5.	Die Verdampfung von Flüssigkeiten 3.5.1. Der Dampfdruck 3.5.2. Die Messung von Dampfdrücken 3.5.3. Die Temperaturahhängigkeit des Dampfdrucks und das Theorem de übereinstimmenden Zustände 3.5.4. Die Verdampfungsenthalpie 3.5.5. Die Clausius-Clapeyronsche Gleichung	. 259 . 259 . 260 er . 260
	Weitere Eigenschaften der Flüssigkeiten 3.6.1. Die Oberflächenspannung 3.6.2. Die Messung der Oberflächenspannung 3.6.3. Die Temperaturabhängigkeit der Oberflächenspannung 3.6.4. Viskosität und Fluidität 3.6.5. Die Messung der Viskosität	. 270 . 270 . 273 . 273 . 275
3.7.	Kristalline Stoffe und Kristallstruktur	. 279 . 279 . 281

XIV	Inhaltsverzeichnis	
	3.7.6. Die Grundgittertypen des kubischen Systems 3.7.7. Der Abstand der Gitterebenen 3.7.8. Weitere Methoden zur Untersuchung der Kristallstruktur 3.7.9. Verschiedene Gittertypen 3.7.10. Polymorphie und Allotropie 3.7.11. Isomorphie	289 289 290 295 299 299
3.8.	Thermodynamische Eigenschaften fester Stoffe 3.8.1. Schmelzen und Sublimieren 3.8.2. Die Molwärmen der Elemente 3.8.3. Die mittlere Energie eines linearen Oszillators 3.8.4. Die Einsteinsche Gleichung 3.8.5. Die Debyesche Gleichung	300 303 306 309
4. Mis	chungen und Lösungen	315
4.1.	Allgemeines über die Eigenschaften von Mischungen 4.1.1. Definitionen; Konzentrationsmaße 4.1.2. Extensive und intensive Eigenschaften von Mischungen 4.1.3. Partielle molare Größen und die Gibbs-Duhemsche Gleichung 4.1.4. Das partielle Molvolumen 4.1.5. Das Radultsche Gesetz	315 317 318 320
4.2.	Eigenschaften verdünnter Lösungen nicht flüchtiger Stoffe 4.2.1. Die Dampfdruckerniedrigung 4.2.2. Die Siedepunktserhöhung 4.2.3. Die Gefrierpunktserniedrigung 4.2.4. Der osmotische Druck 4.2.5. Die kinetische Deutung des osmotischen Drucks 4.2.6. Osmotischer Druck und Dampfdruckerniedrigung 4.2.7. Die anomalen osmotischen Effekte von Elektrolyten	323 325 327 330 333 334
4.3	Diffusion in Lösungen 4.3.1. Das erste Ficksche Gesetz 4.3.2. Das zweite Ficksche Gesetz	340
5. Ch	emische Energetik	346
5.1	Reaktionsenergien und -enthalpien 5.1.1. Thermochemische Gleichungen 5.1.2. Thermochemische Gesetze 5.1.3. Molare Bildungsenthalpien 5.1.4. Molare Verbrennungsenthalpien 5.1.5. Lösungs- und Verdünnungsenthalpien 5.1.6. Weitere spezielle Reaktionsenthalpien 5.1.7. Das Ківсіноғусhе Gesetz 5.1.8. Der Temperaturkoeffizient der molaren Verdampfungsenthalpie	346 349 351 354 357 359 361 365
5.2	2. Der II. Hauptsatz der Thermodynamik und die Entropie 5.2.1. Die Umwandlung von Wärme in Arbeit 5.2.2. Der Carnorsche Kreisprozeß 5.2.3. Der II. Hauptsatz der Thermodynamik 5.2.4. Die thermodynamische Definition der Temperatur 5.2.5. Die Degradation der Wärme 5.2.6. Die Definition der Entropie	366 367 369 371 373

7	1			. : .	1.	nia
IΤ	n۵	 2376	1171	- 11	'n	การ

		Inhaltsverzeichnis	XV
	5.3.	5.2.7. Irreversible Vorgänge	378 380
		5.3.2. Die freie Enthalpie 5.3.3. Die Gibbs-Helmholtzschen Gleichungen 5.3.4. Entropieänderungen bei isothermen physikalischen Vorgängen 5.3.5. Die molare Entropie als Temperaturfunktion 5.3.6. Die absolute Entropie 5.3.7. Die Abhängigkeit der Entropie vom Volumen und vom Druck 5.3.8. Die thermodynamischen Zustandsgleichungen	383 385 386 388 391
	· ,	5.3.9. Molare freie Standardbildungsenthalpien	394 395
		5.4.1. Das Nernstsche Wärmetheorem	397 399
	5.5.	Grundzüge der statistischen Thermodynamik 5.5.1. Das Boltzmann-Theorem 5.5.2. Statistisches Gewicht und Verteilungsfunktionen 5.5.3. Die Verteilungsfunktionen der einzelnen Energiearten 5.5.4. Die Berechnung der thermodynamischen Funktionen aus den Vertei-	402 406 408
		lungsfunktionen 5.5.5. Die Berechnung von Gleichgewichtskonstanten aus den Verteilungsfunktionen	
6.	Glei	chgewichte	418
		6.0.1. Übersicht	
	6.1.	Das Massenwirkungsgesetz und seine Anwendung	418
		6.1.2. Das Massenwirkungsgesetz 6.1.3. Die Berechnung von Gleichgewichtskonzentrationen 6.1.4. Chemische Gleichgewichte in Gasen	422
		6.1.5. Das Prinzip der Aktion und Reaktion 6.1.6. Der Einfluß der Zusammensetzung eines gasförmigen Systems auf die Lage des Gleichgewichts	
		6.1.7. Zusammengesetzte Gleichgewichte	434
	6.2.	Das chemische Potential	444 444 445
	60	die Aktivität	452
	6.3.	Das chemische Gleichgewicht 6.3.1. Nochmals: die Reaktionsisotherme 6.3.2. Die Temperaturabhängigkeit der Gleichgewichtskonstanten 6.3.3. Heterogene chemische Gleichgewichte	455 457
		6.3.4. Zersetzungsgleichgewichte kristalliner Hydrate und Ammoniak-	467

	6.3.5. Zersetzungsgleichgewichte von Ammoniumsalzen	470 471
6.4.	Phasengleichgewichte	473
	6.4.1. Allgemeines über Phasengleichgewichte	473
	6.4.2. Die Clausius-Clapeyronsche Gleichung	474
	6.4.3. Der Dampfdruck kleiner Tröpfchen	477
	6.4.4. Das Raoultsche Gesetz	480
	6.4.5. Siedepunktserhöhung und Gefrierpunktserniedrigung	481
	6.4.6. Der osmotische Druck	482
	6.4.7. Das Löslichkeitsgleichgewicht	482
	6.4.8. Das Henrysche Gesetz	485
	6.4.9. Das Phasengesetz	486
6.5.	Systeme I. Ordnung	490
	6.5.1. Das Phasendiagramm des Wassers	490
	6.5.2. Das Phasendiagramm des Schwefels	491
	6.5.3. Die Ermittlung von Umwandlungspunkten	492
6.6.	Systeme II. Ordnung ohne Beteiligung fester Phasen	494
	6.6.1. Allgemeines über Systeme II. Ordnung	494
	6.6.2. Unbegrenzt mischbare Flüssigkeiten	494
	6.6.3. Fraktionierte Destillation bei konstanter Temperatur	497
	6.6.4. Fraktionierte Destillation bei konstantem Druck	498
	6.6.5. Die praktische Durchführung von fraktionierten Destillationen	501
	6.6.6. Begrenzt mischbare Flüssigkeiten	502
	6.6.7. Dampfdruck und Siedetemperatur begrenzt mischbarer Flüssigkeiten	505
	6.6.8. Wasserdampfdestillation	506
6.7.	Systeme II. Ordnung mit Beteiligung fester Phasen	508
	6.7.1. Zersetzungsgleichgewichte von Hydraten	508
	6.7.2. Gleichgewichte zwischen festen und flüssigen Phasen	511
	6.7.3. Das System Wasser-Natriumchlorid	513
	6.7.4. Andere Systeme, in denen die Komponenten weder eine Verbindung	
	noch Mischkristalle bilden	
	6.7.5. Thermische Analyse	516
	6.7.6. Systeme mit Verbindungsbildung: a) kongruent schmelzende Ver-	- 4.0
	bindungen	518
	6.7.7. Systeme mit Verbindungsbildung: b) inkongruent schmelzende Ver-	590
	bindungen	520
	festen Phase	52 2
	6.7.9. Systeme mit Mischkristallbildung: b) begrenzte Mischborkeit in der	U4A
	festen Phase	525
6.8	Systeme III. Ordnung	
0. 0.	6.8.1. Dreieckskoordinaten	
	6.8.2. Systeme aus drei Flüssigkeiten	
	6.8.3. Das Verteilungsgleichgewicht	
	6.8.4. Gleichgewichte zwischen reinen festen Phasen und einer flüssigen	
	Mischphase	534
	6.8.5. Wäßrige Lösungen von zwei Salzen	536
6.9	Gleichgewichte an Phasengrenzflächen	
2.2	6.9.1. Phasengrenzgebiete und Wesen der Adsorption	539
•	6.9.2. Das Adsorptionsgleichgewicht	542
	6.9.3. Die Adsorptionsisothermen von Freundlich und Langmuir	543
	6.9.4. Die Adsorptionsisotherme von BRUNAUER, EMMETT und TELLER	546

Inhaltsverzeichnis	XVII
6.9.5. Die Adsorptionsisotherme von Dubinin und Raduschkewitsch 6.9.6. Adsorption und Kapillarkondensation	551 553
6.10. Oberflächenfilme 6.10.1. Die Herstellung von Oberflächenfilmen und Untersuchung ihr Eigenschaften 6.10.2. Ideale gasanaloge Oberflächenfilme 6.10.3. Reale gasanaloge Oberflächenfilme 6.10.4. Kondensierte Oberflächenfilme	er 561 562 564
7. Elektrochemie I: Elektrolyte	
7.1. Die Anfänge der Theorie der elektrolytischen Dissoziation	567
7.2. Die Leitfähigkeit der Elektrolyte 7.2.1. Die spezifische Leitfähigkeit und ihre Messung 7.2.2. Der Mechanismus der Stromleitung 7.2.3. Die Konzentrationsabhängigkeit der Leitfähigkeit 7.2.4. Das Gesetz der unabhängigen Ionenwanderung 7.2.5. Die Theorie der elektrolytischen Dissoziation von Arrhenius 7.2.6. Die Hirtorischen Überführungszahlen 7.2.7. Die wahren Überführungszahlen 7.2.8. Anomale Überführungszahlen 7.2.9. Die Ionenleitvermögen 7.2.10. Nichtwäßrige Lösungen 7.2.11. Die Leitfähigkeit von Schmelzen 7.2.12. Die Leitfähigkeit fester Elektrolyte	570 570 573 575 577 578 579 583 584 585 589 590
7.3. Anwendungen von Leitfähigkeitsmessungen 7.3.1. Die Ermittlung der Löslichkeit von Salzen durch Leitfähigkeit messungen 7.3.2. Die konduktometrische Titration	ts- 590
7.4. Schwache Elektrolyte 7.4.1. Die Dissoziationskonstante 7.4.2. Das Ostwaldsche Verdünnungsgesetz 7.4.3. Schwache Säuren und Basen 7.4.4. Das Ionenprodukt des Wassers 7.4.5. Der pH-Wert 7.4.6. Die Hydrolyse von Salzen 7.4.7. Pufferlösungen 7.4.8. Die Pufferkapazität 7.4.9. Amphotere Elektrolyte 7.4.10. Die Tautomerie 7.4.11. Tautomerengleichgewichte in Lösungen 7.4.12. Säure—Basen-Indikatoren	593 595 596 599 602 603 607 611 613
7.5. Starke Elektrolyte	625

		7.5.3. Komplexe Ionen	631
		Elektrolyte	637 638
		Die Theorie der starken Elektrolyte	639
		eine gegebene Konzentration	646
		7.6.5. Der Aktivitätskoeffizient bei schwachen Elektrolyten	649 653
		7.6.7. Das Ionenleitvermögen bei unendlicher Verdünnung	656
8.		strochemie II: Elektromotorische Kräfte und elektrolytische Erscheinungen	
	8.1.	Die chemische und energetische Seite der Elektrolyse 8.1.1. Die Arten der Elektrodenvorgänge 8.1.2. Die elektrochemischen Äquivalente 8.1.3. Die elektrische Energie	663 664
	8.2.	Galvanische Ketten 8.2.1. Die elektromotorische Kraft einer Kette 8.2.2. Die Messung der EMK von Ketten	668 672
		8.2.3. Die Arten der reversiblen Elektroden	67 6 67 8 679
		8.2.7. Elektrodenpotentiale gegenüber der Standardwasserstoffelektrode; Standardpotentiale	682
		8.2.8. Konzentrationsketten ohne Überführung 8.2.9. Konzentrationsketten mit Überführung 8.2.10. Das Diffusionspotential	689
		8.2.11. Die Elimination des Diffusionspotentials	694 695
	8.3	Elektroden I. und II. Art 8.3.1. Die Wasserstoffelektrode	696
		8.3.2. Die Standardwasserstoffelektrode; Ermittlung von Standardpotentialen 8.3.3. Bezugselektroden	701
		8.3.5. Das Ionenprodukt des Wassers 8.3.6. Amalgamelektroden 8.3.7. Die Sauerstoffelektrode	704 705
		8.3.8. Die Halogenelektroden 8.3.9. Elektroden II. Art 8.3.10. Das Weston-Normalelement	708
	8.4	Redoxelektroden 8.4.1. Die Entstehung des Redoxpotentials	. 714 . 714
	-	8.4.2. Die Peterssche Gleichung	. 712

		Inhaltsverzeichnis X	XIX
		8.4.4. Die Clarkschen Exponenten rH und rO	799
		8.4.5. Die Clarksche Deutung des Redoxpotentials	724
		8.4.6. Die Luthersche Gleichung	725
		8.4.7. Mischungen verschiedener Redoxsysteme	728
		8.4.8. Die Oxydations-Reduktions-Titrationen	729
		8.4.9. Organische Redoxsysteme	732
		8.4.10. Die Chinhydronelektrode	737
	9.5	Spezielle Elektroden	739
	0.5.	8.5.1. Die Glaselektrode	739
		8.5.2. Oxidelektroden	740
	86	Elektrochemische Stromquellen	741
	0.0.	8.6.1. Galvanische Elemente	741
		8.6.2. Akkumulatoren	742
	8.7.		
		8.7.1. Begriff und Arten der Überspannung	746
		8.7.2. Die Diffusionsüberspannung	747
		8.7.3. Die Durchtrittsüberspannung	750
		8.7.4. Die Wasserstoff- und Sauerstoffabscheidung	753
		8.7.5. Die Abscheidung von Metallen	
	8.8.		758
		8.8.1. Die Elektrokapillarität	758
		8.8.2. Die polarographische Methode	
			762
			764
		8.8.5. Die kinetischen Ströme	767
		8.8.6. Katalysierte Vorgänge	760
		8.8.8. Die polarographische Analyse	771
	9.0	Die anodische Auflösung von Metallen; Passivität, Korrosion	
	0.0.	8.9.1. Die anodische Metallauflösung	771
		8.9.2. Die anodische Passivität	772
		8.9.3. Korrosion und Lokalelemente	774
		8.9.4. Korrosion in Gegenwart eines Depolarisators	
		· · · · · · · · · · · · · · · · · · ·	
Q	Res	ktionskinetik	779
٠.		Die kinetischen Grundgleichungen	
	3.1.		
		9.1.1. Grundbegriffe	720
		9.1.3. Radioaktive Umwandlungen	793
		9.1.4. Das radioaktive Gleichgewicht	784
		9.1.5. Nichtstationäre radioaktive Umwandlungsprozesse	787
		9.1.6. Reaktionen zweiter Ordnung	789
		9.1.7. Reaktionen dritter Ordnung	791
		9.1.8. Reaktionen höherer Ordnung	794
	9.2.	Simultanreaktionen	795
		9.2.1. Umkehrbare Reaktionen	795
		9.2.2. Nebenreaktionen	797
		9.2.3. Folgereaktionen	798
		9.2.4. Kettenreaktionen	801
		9.2.5. Der Mechanismus der Kettenreaktionen	803
		9.2.6. Polymerisationsreaktionen	805

9.3.	Die Theorie der Reaktionsgeschwindigkeit	806
	9.3.1. Die Temperaturabhängigkeit der Reaktionsgeschwindigkeit	806
	9.3.2. Die Deutung der Reaktionsgeschwindigkeit auf Grund der Stoßtheorie	808
	9.3.3. Der Mechanismus der monomolekularen Reaktionen	810
	9.3.4. Die Theorie des Übergangszustands	811
	9.3.5. Der Zusammenhang zwischen der Geschwindigkeitskonstanten und der	
	Aktivierungsentropie	817
	9.3.6. Die Berechnung der Aktivierungsenergie	818
0.7	Heterogene Reaktionen	
9.4.	neterogene neaktionen	020
	9.4.1. Die Auflösungsgeschwindigkeit	820
	9.4.2. Chemische Reaktionen an Grenzflächen zwischen festen und gasförmigen	
	Phasen	822
	9.4.3. Die Kinetik des Verdampfungsvorgangs	
9.5.	Homogene Katalyse	825
	9.5.1. Das Wesen der Katalyse	825
	9.5.2. Die Säure—Basen-Katalyse	826
	9.5.3. Der Mechanismus der Säure—Basen-Katalyse	828
	9.5.4. Weitere Beispiele homogener Katalyse in Lösungen und Gasen	831
	9.5.5. Die Autokatalyse	834
	9.5.6. Der primäre Salzeffekt	836
	9.5.7. Der sekundäre Salzeffekt	839
0.6	Heterogene Katalyse	
9.0.	9.6.1. Allgemeines	040
	0.0.1. Angemeines	040
	9.6.2. Katalytische Ptedox-Reaktionen	0//
	9.6.3. Katalytische Säure—Basen-Reaktionen	544
	9.6.4. Reaktionsgeschwindigkeit und Kinetik heterogener katalytischer Re-	
	aktionen	846
	9.6.5. Enzymatische Reaktionen	853
10. Ko	lloide Systeme	855
	10.0.1. Allgemeine Merkmale des kolloiden Zustands	
40.4	. Kolloide Lösungen	
10.1	10.1.1. Die Darstellung von Solen	957
	10.1.2. Dialyse, Elektrodialyse, Ultrafiltration	950
	10.1.3. Die optischen Eigenschaften der Sole	920
	40.1.6. Sedimentation and Property Designs of	060
	10.1.4. Sedimentation und Brownsche Bewegung	004
	10.1.3. Die Destinitung der Molmasse von Kolloidteilchen durch Sedimen-	066
40.5	tation	
10.2	Lyophobe und lyophile Sole	869
	10.2.1. Kennzeichen lyophober und lyophiler Sole	869
	10.2.2. Die Struktur der lyophoben Teilchen	870
	10.2.3. Die Ausflockung lyophober Sole durch Elektrolyte	871
	10.2.4. Eigenschaften lyophiler Sole	. 872
	10.2.5. Die Elektrophorese der Eiweißstoffe	. 874
	10.2.6. Optische Methoden für elektrophoretische Messungen	. 875
10.3	B. Elektrische Doppelschichten	. 878
	10.3.1. Die Helmholtzsche Doppelschicht	. 878
	10.3.2. Die diffuse Doppelschicht	. 879
	10.3.3. Die Sternsche Doppelschicht	882
10.	4 Elektrokinetische Erscheinungen	995
-0.	10.4.1. Das elektrokinetische Potential	. 000 902
	ZOTTE DOU COMMUNICACIO I OCCILIRI	୦୦୦

Inhaltsverzeichnis	XXI
10.4.2. Die Elektroosmose 10.4.3. Die Elektrophorese 10.4.4. Das Strömungspotential 10.4.5. Das elektrophoretische Potential	. 888 . 891 . 892
10.5. Membrangleichgewichte	. 893 . 895 . 898 . 899
10.6. Gele, Emulsionen und Schäume 10.6.1. Gele 10.6.2. Emulsionen 10.6.3. Schäume; Flotation	. 900 . 902
11. Wechselwirkungen zwischen Stoffen und Strahlung	
11.1.1. Der Brechungsindex 11.1.2. Die Verschiebungspolarisation 11.1.3. Der Zusammenhang zwischen dem Verschiebungsanteil der moleku-	. 905 . 906 -
laren Polarisierbarkeit und der Dielektrizitätskonstanten 11.1.4. Die Orientierungspolarisation 11.1.5. Molrefraktion und chemische Struktur 11.1.6. Die Ionendeformierbarkeit	. 909 . 911 . 915
11.1.7. Polarisierbarkeit und chemische Bindung 11.1.8. Permanentes Dipolmoment und Molekülstruktur 11.1.9. Dipolmomente einzelner Bindungen 11.1.10. Die freie Drehbarkeit der C-C-Bindung	. 920 . 922 . 923
11.1.10. Die Freie Drenbarkeit der CC-Bindung 11.1.11. Die Anisotropie der Polarisierbarkeit 11.2. Die optische Aktivität 11.2.1. Die Messung des optischen Drehwinkels	. 929 . 930
11.2.2. Spezifisches und molares Drehvermögen 11.2.3. Die temporäre optische Aktivität 11.2.4. Die permanente optische Aktivität	. 933 . 934 . 935
11.3. Die Lichtabsorption	. 937 . 939
11.3.4. Magnetische Kern- und Elektronenresonanz 11.3.5. Absorption und chemische Struktur 11.4. Molekülspektren	. 945 . 949
11.4.1. Entstehung und Einteilung der Molekülspektren 11.4.2. Die Rotationsspektren 11.4.3. Die Rotationsschwingungsspektren 11.4.4. Die Elektronenspektren 11.4.5. Wellenmechenische Behandlung der Bewegungsmöglichkeiten der Kerne eines zweiatomigen Moleküls	. 952 . 955 . 957 . 963
11.5. Die sekundäre Lichtstrahlung	. 974 . 974 . 978
11.6. Zusammenhänge zwischen elektromagnetischer Strahlung und chemischer Reaktionen	n 980

	11.6.1. Das photochemische Äquivalenzgesetz	980
	11.6.2. Durch Photodissoziation hervorgerusene Reaktionen	982
	11.6.3. Andere Reaktionen photoaktivierter Moleküle	983
	11.6.4. Der photographische Prozeß	985
	11.6.5. Die Assimilation des Kohlendioxids	986
	11.6.6. Die Chemilumineszenz	987
11.7.	Strahlenchemie	988
٠	11.7.1. Chemische Wirkungen der ionisierenden Strahlung	988
	11.7.2. Die einzelnen Phasen der strahlungschemischen Reaktionen	
	11.7.3. Die Ausbeute strahlungschemischer Reaktionen	991
,	11.7.4. Beispiele für strahlungschemische Reaktionen	992
	11.7.5. Die Wirkung ionisierender Strahlung auf feste Stoffe	993
Anhang		995
1.	Größengleichungen	995
2.	Einheiten	996
3.	Die Molzahl und das Mol	996
4.	Elektrostatische und elektromagnetische Größen und Einheiten	997
	4.1. Vorbemerkungen	997
	4.2. Elektrostatische Größen und Einheiten	
	4.3. Elektromagnetische Größen und Einheiten	
		1000
5.	Logarithmen in Größengleichungen	1 0 01
Literati	Literaturverzeichnis 1	
Naman, and Sachyamaichnic		1016