
Table of Contents 

Preface vii 

1. Introduction 1 
Why Did They Need to Change Java Again? 1 
What Is Functional Programming? 2 
Example Domain 3 

2. Lambda Expressions 5 
Your First Lambda Expression 5 
How to Spot a Lambda in a Haystack 6 
Using Values 8 
Functional Interfaces 9 
Type Inference 11 
Key Points 13 
Exercises 14 

3. Streams 17 
From External Iteration to Internal Iteration 17 
What's Actually Going On 20 
Common Stream Operations 21 

collect(toList()) 22 
map 22 
filter 24 
flatMap 25 
max and min 26 
A Common Pattern Appears 27 
reduce 28 
Putting Operations Together 30 

Refactoring Legacy Code 31 



Multiple Stream Calls 34 
Higher-Order Functions 36 
Ciood Useol Lambda Expressions 36 
Key Points 37 
Fxercises 37 
Advanced Fxercises 39 

4. Libraries 41 
Using Lambda Expressions in Code 41 
Primitives 42 
Overload Resolution 45 
(a'Funclionallnterlace 47 
Binary Interface Compatibility 47 
Default Methods 48 

Default Methods and Subclassing 49 
Multiple Inheritance 52 

The Three Rules 53 
Tradeoffs 54 
Static Methods on Interfaces 54 
Optional 55 
Key Points 56 
Exercises 57 
Open Exercises 58 

5. Advanced Collections and Collectors 59 
Method References 59 
Element Ordering 60 
Enter the Collector 62 

Into Other Collections 62 
To Values 63 
Partitioning the Data 64 
Grouping the Data 65 
Strings 66 

Composing Collectors 57 
Refactoring and Custom Collectors 69 
Reduction as a Collector 75 

Collection Niceties 77 
Key Points 7g 
Exercises 7g 

6. Data Parallelism g-| 
Parallelism Versus Concurrency gj 

iv | Table of Contents 



Why Is Parallelism Important? 
Parallel Stream Operations 
Simulations 
Caveats 
Performance 
Parallel Array Operations 
Key Points 
Exercises 

7. Testing, Debugging, and Refactoring 
Lambda Refactoring Candidates 

In, Out, In, Out, Shake It All About 
The Lonely Override 
Behavioral Write Everything Twice 

Unit Testing Lambda Expressions 
Using Lambda Expressions in Test Doubles 
Lazy Evaluation Versus Debugging 
Logging and Printing 
The Solution: peek 
Midstream Breakpoints 
Key Points 

8. Design and Architectural Principles 
Lambda-Enabled Design Patterns 

Command Pattern 
Strategy Pattern 
Observer Pattern 
Template Method Pattern 

Lambda-Enabled Domain-Specific Languages 
A DSL in Java 
How We Got There 
Evaluation 

Lambda-Enabled SOLID Principles 
The Single Responsibility Principle 
The Open/Closed Principle 
The Dependency Inversion Principle 

Further Reading 
Key Points 

9. Lambda-Enabled Concurrency 
Why Use Nonblocking I/O? 
Callbacks 

Table of Contents 

83 
83 
85 
88 
89 
92 
94 
94 

97 
97 
98 
98 
99 

102 
105 
106 
106 
107 
107 
108 

109 
110 
110 
114 
117 
119 
123 
124 
125 
127 
127 
128 
130 
134 
137 
137 

139 
139 
140 

I v 



Message Passing Archilectures 144 
1 he Pyramid of Doom 145 
futures 147 
Completable futures 149 
Reactive Programming 153 
W h e n a n d W h e re 15 5 
Key Points 155 
Exercises 156 

10. Moving Forward 159 

Index 161 

vi | Table of Contents 


