Contents

CONTENTSI				
NOME	NCLATURE			
ADDIT	IONAL NOTATIONS IX			
ACRON	IYMSX			
1 IN	TRODUCTION1			
2 M	ODEL-BASED ANALYSIS AND DEVELOPMENT OF DC-DC CONVERTERS			
3 M	ODEL-BASED ANALYSIS OF A REFERENCE SOLUTION9			
3.1 Ov	erview of a Reference Device9			
3.2 Ma	odeling of the PWM Buck Converter			
3. 2 .1	Large-Signal Model in CCM 11			
3.2.2	Large-Signal Model in DCM12			
3.2.3	Steady-State Solution14			
3.2.4	Boundary Condition between CCM and DCM14			
3.3 Mo	odeling of the PSFB Converter			
3.3.1	Large-Signal Model in CCM and in DCM15			
3.3.2	Steady-State Solution			
3.3.3	Boundary Condition between CCM and DCM17			
3.3.4	Estimation of Semiconductor Losses			
3.3.5	Current and Voltage Ripples			

I

II

3.4	Simu	lative Verification
3.5	Mod	el-Based Analysis of the Reference Device28
3.6	Strat	egies for Dynamical Improvement
3.7	Three	e-Level and Multi-Phase Phased-Shifted Bridge Topologies
3.8	Sumi	mary
4	INV	ESTIGATION OF RESONANT CONVERTER TOPOLOGIES
4.1	Over	view and Topology Variants of Resonant Converters
4.	1. 1	Structure of Resonant Converters
4.	1.2	Topology Variants of the Inverter
4.	1. 3	Topology Variants of the Resonant Tank
4.	1.4	Topology Variants of the Output Filter
4.2	Revie	ew of Steady-State Modeling Techniques of Resonant Converters
4.3	Com	parison and Selection of Resonant-Converter Topology43
4.	3.1	AC Fundamental Harmonic Approach of Resonant Converters
4.	.3.2	Comparison and Selection of Resonant-Tank Topology
4.4	Com	parison and Selection of Control Schemes51
4.	.4.1	Modulation Strategies
4.	.4.2	Comparison of Control Schemes
4.5	Exte	nded AC Fundamental Harmonic Approach of the SPRC-LC
4.	.5.1	Steady-State Control Characteristics
4	.5.2	Estimation of Converter Losses
4.6	Time	e-Domain Approach of SPRC-LC63

4	. 6 .1	Modeling of SPRC-LC under Optimized Modulation	63
4	.6.2	Calculation of Converter Steady-State Characteristics	71
4.7	Mod	lel-Based Converter Design	71
4	.7.1	Design and Optimization of Converter Parameters	
4	.7.2	Model-Based Final Electrical Design	73
4.8	Expe	erimental Verification of Calculation and Simulation	76
4.9	Sumi	mary	81
5	OPT	TIMIZED MODULATION CONTROL UNIT	83
5.1	State	e-of-the-Art Hybrid Optimized Modulation Control Unit	
5.2	Nove	el Fully Digital Optimized Modulation Control Unit	85
5	.2.1	Operation Principle of Pulse Generation (Core Function)	85
5	.2.2	Other Functional Blocks	
5.3	Oper	n-Loop Commissioning and Measurement	
5.4	Sum	mary	
6	мо	DELING OF CONVERTER DYNAMICS AND CONTROL DESIGN	93
6.1	Revi	ew of the Standard Extended Describing Function Method	
6. 2	Nove	el Extended Describing Function Method for SPRC-LC	100
6	5.2.1	Modeling Procedure	100
6	5.2.2	Simulative and Experimental Verification	106
6.3	Time	e-Domain Modeling of SPRC-LC Dynamics	112
6	5.3.1	SPRC-LC under Fixed Switching Frequency	112
6	5.3.2	SPRC-LC with an Ideal OM Control Unit	113

6.	.3.3	SPRC-LC with a Digital OM Control Unit	116
6.	3.4	Simulative and Experimental Validation	116
6.4	Desig	gn of an Adaptive Controller	
6.	4.1	Design of Gain Scheduling Controller	
6.	4.2	Measurement Results	
6.5	Sumi	mary	
7	DEV	VELOPMENT ENVIRONMENT	125
7.1	Deve	elapment Environment for Converter Design	
7.2	Real-	-Time Simulator of SPRC-LC	
7.	.2.1	Modelling of the Continuous Subsystem	
7.	.2. 2	Modelling of the Discrete-Event Subsystem (Power Converter)	128
7.	.2.3	Implementation and Verification	
7.	.2.4	Application in Development and Test of the OM Control Unit	
8	CON	NCLUSION AND OUTLOOK	137
8.1	Conc	clusion	137
8.2	Out	ook	139
9	АРІ	PENDIX	
9.1	Estin	nation of Semiconductor Losses	
9.2	AC F	undamental Harmonic Approach of Resonant Converters	144
LIS	T OF	FIGURES	
LIS	T OF	TABLES	
BIE	BLIOG	GRAPHY	