CONTENTS

CHAPTER 1:	
Introduction	1
	_
1 Background and Motivation	2
1.1 Transformation of the power generation system	2
1.2 Transformation to a more decentralized power generation system	5
1.3 Governmental support and promotion schemes	5
2 Contribution of the thesis and research question	6
3 Structure of the thesis	9
4 Model description and methodical limitations of the chosen approaches1	1
4.1 Financial evaluation models1	1
4.2 Mean-variance portfolio model	2
4.3 Real options models	4
4.4 Input parameter of the evaluation models1	5
5 Summary of results and practical implications1	8
6 Outlook and need for further research	0

CHAPTER 2:

1 Introduction	
2 Review of the relevant literature	
2.1 CHP generation	
2.2 Application of portfolio theory on generation portfolios	
3 Classification of CHP applications	
3.1 Classification by size	
3.2 Classification by technology	
3.3 Classification by mode of operation	
3.4 Classification by fuel type	
3.5 Classification by sector	
4 Model assumptions	

4.1 Commodity prices	
4.2 Technical and operational parameters	
4.3 CHP promotion	40
4.4 Allocation of CO ₂ allowances	40
5 Application of MVP theory to CHP technologies	
5.1 Definition of selection criteria for portfolio investigation	
5.1.1 Net present value	
5.1.2 Expected annual return	
5.2 Portfolio calculation	
5.3 Results of the portfolio evaluation	45
5.3.1 Portfolio evaluation based on NPVs	45
5.3.2 Portfolio evaluation based on the expected annual return	47
6 Discussion and impact on CHP generation in Germany	50
7 Conclusion	53

•

CHAPTER 3:

The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis	
1 Introduction	65
2 Status of CHP implementation in Europe	66
3 Support mechanisms for CHP generation	66
3.1 Survey of support mechanisms for CHP	67
3.1.1 Feed-in tariffs	67
3.1.2 Certificate schemes	68
3.1.3 Investment support	68
3.1.4 Fiscal support	69
3.1.5 Beneficial allocation of CO ₂ emission permits	69
3.2 Examples of the application of CHP support mechanisms in Europe	70
3.2.1 CHP promotion in Germany	71
3.2.2 CHP promotion in France	72
3.2.3 CHP promotion in Italy	73
3.2.4 CHP promotion in the UK	74
4 Application of MVP theory in the context of power generation	75

5 Definition of input parameters	77
5.1 Commodity prices	77
5.2 Technical and operational parameters	78
5.3 Financial parameters of the cash flow model	79
6 MVP analysis on CHP investment options	80
6.1 Results from the financial model	80
6.2 Sensitivity analysis	80
6.3 Correlation coefficients	82
6.4 Results MVP analysis	83
6.4.1 CCGT-CHP	83
6.4.2 Engine-CHP	84
7 Conclusion and policy implications	86

CHAPTER 4:

1 Introduction 102
2 Review of related literature 104
3 Model assumptions and definition of assessment criteria107
3.1 Input parameters
3.1.1 Technical parameter of the power plants 108
3.1.2 Commodity price assumptions
3.1.3 Promotion of CHP in Germany
3.2 Calculation of the aggregated annual spread112
3.2.1 Specific spread
3.2.2 Utilization of power plants115
3.2.3 Calculation of the aggregated annual spread based on correlation coefficients 116
3.2.4 Calculation of the aggregated annual spread based on copula functions 118
4 Structure of the real options model 123
5 Discussion and interpretation of the results
5.1 Difference between condensing plants and CHP plants
5.2 Influence of CHP generation on investment decisions in coal plants 128
6 Conclusions

CHAPTER 5:	
The impact of modified EU ETS allocation principles on the economics	
of CHP-based district heating systems	. 141

1	Introduction
2	CHP-based district heating systems 144
	2.1 Classification of district heating systems
	2.2 Primary energy savings and emission reduction through CHP-based district heating. 145
	2.2.1 Large-scale CHP technologies
	2.2.2 Small-scale CHP technologies 148
3	The European emission trading system150
	3.1 General principles in the third EU ETS period 150
	3.2 Modification of allocation rules for CHP-based DH plants in the third ETS period 152
4	Economic evaluation of modified EU ETS allocation rules for CHP-based DH 154
	4.1 Input parameters
	4.1.1 Technical and operational parameters154
	4.1.2 Commodity price assumptions 156
	4.2 Results of the economic evaluation
5	Impact of modified allocation rules on investments in new CHP plants for DH 161
	5.1 Real options approach 161
	5.2 Model description
	5.3 Discussion and interpretation of the results
	5.3.1 Impact of the EU ETS on investments in large-scale CHP applications for DH 167
	5.3.2 Impact of modified EU ETS principles on small-scale CHP units 168
6	Conclusion