Contents

reface		page xi
ist	of Notation	xv
1.	Boolean Functions and the Fourier Expansion	1
	1.1. On Analysis of Boolean Functions	1
	1.2. The "Fourier Expansion": Functions as Multilinear	
	Polynomials	2
	1.3. The Orthonormal Basis of Parity Functions	5
	1.4. Basic Fourier Formulas	7
	1.5. Probability Densities and Convolution	12
	1.6. Highlight: Almost Linear Functions and the BLR Test	14
	1.7. Exercises and Notes	17
2.	Basic Concepts and Social Choice	26
	2.1. Social Choice Functions	26
	2.2. Influences and Derivatives	29
	2.3. Total Influence	32
	2.4. Noise Stability	36
	2.5. Highlight: Arrow's Theorem	41
	2.6. Exercises and Notes	45
3.	Spectral Structure and Learning	54
	3.1. Low-Degree Spectral Concentration	54
	3.2. Subspaces and Decision Trees	56
	3.3. Restrictions	59
	3.4. Learning Theory	64
	3.5. Highlight: The Goldreich-Levin Algorithm	68
	3.6. Exercises and Notes	71

viii Contents

4.	DNF Formulas and Small-Depth Circuits	79
	4.1. DNF Formulas	79
	4.2. Tribes	82
	4.3. Random Restrictions	84
	4.4. Håstad's Switching Lemma and the Spectrum of DNFs	86
	4.5. Highlight: LMN's Work on Constant-Depth Circuits	89
	4.6. Exercises and Notes	94
5.	Majority and Threshold Functions	99
	5.1. Linear Threshold Functions and Polynomial Threshold	
	Functions	99
	5.2. Majority, and the Central Limit Theorem	104
	5.3. The Fourier Coefficients of Majority	108
	5.4. Degree-1 Weight	111
	5.5. Highlight: Peres's Theorem and Uniform Noise Stability	118
	5.6. Exercises and Notes	122
6.	Pseudorandomness and \mathbb{F}_2 -Polynomials	131
	6.1. Notions of Pseudorandomness	131
	6.2. \mathbb{F}_2 -Polynomials	136
	6.3. Constructions of Various Pseudorandom Functions	140
	6.4. Applications in Learning and Testing	144
	6.5. Highlight: Fooling \mathbb{F}_2 -Polynomials	149
	6.6. Exercises and Notes	153
7.	Property Testing, PCPPs, and CSPs	162
	7.1. Dictator Testing	162
	7.2. Probabilistically Checkable Proofs of Proximity	167
	7.3. CSPs and Computational Complexity	173
	7.4. Highlight: Håstad's Hardness Theorems	180
	7.5. Exercises and Notes	186
8.	Generalized Domains	197
	8.1. Fourier Bases for Product Spaces	197
	8.2. Generalized Fourier Formulas	201
	8.3. Orthogonal Decomposition	207
	8.4. p-Biased Analysis	211
	8.5. Abelian Groups	218
	8.6. Highlight: Randomized Decision Tree Complexity	222
	8.7. Exercises and Notes	228

Contents ix

9.	Basics of Hypercontractivity	240
	9.1. Low-Degree Polynomials Are Reasonable	241
	9.2. Small Subsets of the Hypercube Are Noise-Sensitive	246
	9.3. $(2, q)$ - and $(p, 2)$ -Hypercontractivity for a Single Bit	250
	9.4. Two-Function Hypercontractivity and Induction	254
	9.5. Applications of Hypercontractivity	256
	9.6. Highlight: The Kahn-Kalai-Linial Theorem	260
	9.7. Exercises and Notes	266
10.	Advanced Hypercontractivity	278
	10.1. The Hypercontractivity Theorem for Uniform ±1 Bits	278
	10.2. Hypercontractivity of General Random Variables	283
	10.3. Applications of General Hypercontractivity	288
	10.4. More on Randomization/Symmetrization	293
	10.5. Highlight: General Sharp Threshold Theorems	301
	10.6. Exercises and Notes	310
11.	Gaussian Space and Invariance Principles	325
	11.1. Gaussian Space and the Gaussian Noise Operator	326
	11.2. Hermite Polynomials	335
	11.3. Borell's Isoperimetric Theorem	339
	11.4. Gaussian Surface Area and Bobkov's Inequality	343
	11.5. The Berry-Esseen Theorem	350
	11.6. The Invariance Principle	359
	11.7. Highlight: Majority Is Stablest Theorem	366
	11.8. Exercises and Notes	373
Son	ne Tips	393
Bibl	iography	395
Inde	Index	