Contents

Preface			xiii
1	Intro	duction to Process Optimization	1
	1.1	Scope of Optimization Problems	. 1
	1.2	Classification of Optimization Problems	. 3
	1.3	Optimization Applications in Chemical Engineering	
	1.4	Nonlinear Programming Examples in Chemical Engineering	
		1.4.1 Design of a Small Heat Exchanger Network	
		1.4.2 Real-Time Optimization of a Distillation Column	. 9
		1.4.3 Model Predictive Control	. 11
	1.5	A Motivating Application	
	1.6	Summary and Notes for Further Reading	. 15
	1.7	Exercises	
2	Conc	epts of Unconstrained Optimization	17
	2.1	Introduction	. 17
	2.2	Basic Concepts	. 19
		2.2.1 Vectors and Matrices	. 19
		2.2.2 Quadratic Forms	. 22
		2.2.3 Classification of Functions	. 25
	2.3	Optimality Conditions	. 27
	2.4	Algorithms	
		2.4.1 Direct Search Methods	. 30
		2.4.2 Methods That Require Derivatives	
	2.5	Summary and Notes for Further Reading	. 37
	2.6	Exercises	. 37
3	Newt	on-Type Methods for Unconstrained Optimization	39
	3.1	Introduction	. 39
	3.2	Modification of the Hessian Matrix	. 40
	3.3	Quasi-Newton Methods	. 42
	3.4	Line Search Methods	. 46
	3.5	Trust Region Methods	. 52
		3.5.1 Convex Model Problems	. 53
		3.5.2 Nonconvex Model Problems	. 56

	3.6	Summary and Notes for Further Reading	60
	3.7	Exercises	
4	Conce	epts of Constrained Optimization	63
	4.1	Introduction	
		4.1.1 Constrained Convex Problems	64
	4.2	Local Optimality Conditions—A Kinematic Interpretation	
	4.3	Analysis of KKT Conditions	72
		4.3.1 Linearly Constrained Problems	
		4.3.2 Nonlinearly Constrained Problems	76
		4.3.3 Second Order Conditions	
	4.4	Special Cases: Linear and Quadratic Programs	
		4.4.1 Description of Linear Programming	84
		4.4.2 Description of Quadratic Programming	85
		4.4.3 Portfolio Planning Case Study	86
	4.5	Summary and Notes for Further Reading	
	4.6	Exercises	90
5	Newto	on Methods for Equality Constrained Optimization	91
	5.1	Introduction to Equality Constrained Optimization	
	5.2	Newton's Method with the KKT Matrix	92
		5.2.1 Nonsingularity of KKT Matrix	
		5.2.2 Inertia of KKT Matrix	95
	5.3	Taking Newton Steps	
		5.3.1 Full-Space Newton Steps	96
		5.3.2 Reduced-Space Newton Steps	99
	5.4	Quasi-Newton Methods	102
		5.4.1 A Quasi-Newton Full-Space Method	103
		5.4.2 A Quasi-Newton Reduced-Space Method	105
	5.5	Globalization for Constrained Optimization	
		5.5.1 Concepts of Merit Functions	
		5.5.2 Filter Method Concepts	
		5.5.3 Filter versus Merit Function Strategies	113
	5.6	Line Search Methods	
		5.6.1 Line Search with Merit Functions	
		5.6.2 Line Search Filter Method	
	5.7	Trust Region Methods	
		5.7.1 Trust Regions with Merit Functions	
		5.7.2 Filter Trust Region Methods	
	5.8	Combining Local and Global Properties	128
		5.8.1 The Maratos Effect	
	5.9	Summary and Conclusions	
	5.10	Notes for Further Reading	
	5.11	Exercises	131
6	Nume	erical Algorithms for Constrained Optimization	133
	6.1	Constrained NLP Formulations	133

7

8

4
4
0
8
1
4
5
8
60
i 4
57
68
i9
0
1
1
'5
6
8
Č
31
31
33
88
91
93
)6
)0
)1
)3
)6
)9
)9
13
3
4
20
23
25
32
32
37
39
13

	8.7	Summary and Conclusions	246
	8.8	Notes for Further Reading	247
	8.9	Exercises	248
9	Dyna	mic Optimization Methods with Embedded DAE Solvers	251
	9.1	Introduction	251
	9.2	DAE Solvers for Initial Value Problems	
		9.2.1 Runge–Kutta Methods	255
		9.2.2 Linear Multistep Methods	
		9.2.3 Extension of Methods to DAEs	
	9.3	Sensitivity Strategies for Dynamic Optimization	
		9.3.1 Direct Sensitivity Calculations	
		9.3.2 Adjoint Sensitivity Calculations	262
		9.3.3 Evolution to Optimal Control Problems	
	9.4	Multiple Shooting	271
		9.4.1 Dichotomy of Boundary Value Problems	273
	9.5	Dynamic Optimization Case Study	276
	9.6	Summary and Conclusions	282
	9.7	Notes for Further Reading	
	9.8	Exercises	284
10	Simul	Itaneous Methods for Dynamic Optimization	287
10	10.1		
	10.1	Derivation of Collocation Methods	
	10.2	10.2.1 Polynomial Representation for ODE Solutions	
		10.2.2 Collocation with Orthogonal Polynomials	290
	10.3	NLP Formulations and Solution	
	10.5	10.3.1 Treatment of Finite Elements	
		10.3.2 Treatment of Unstable Dynamic Systems	
		10.3.3 Large-Scale NLP Solution Strategies	
		10.3.4 Parameter Estimation for Low-Density Polyethylene	
		Reactors	304
	10.4	Convergence Properties of Simultaneous Approach	
	10.1	10.4.1 Optimality with Gauss–Legendre Collocation	
		10.4.2 Optimality with Radau Collocation	
		10.4.3 Convergence Orders for NLP Solutions	
		10.4.4 Singular Optimal Controls	
		10.4.5 High-Index Inequality Path Constraints	317
	10.5	Summary and Conclusions	317
	10.5	Notes for Further Reading	
	10.0	Exercises	
11	D		
11	11.1	ess Optimization with Complementarity Constraints Introduction	325
	11.2	MPCC Properties and Formulations	
	11.4	11.2.1 Solution Strategies	
		11.2.1 Solution strategies 11.2.2 Comparison of MPCC Formulations	331
		11.2.2 Compansion of MFCC Formulations	333

11.3	Complementary Models for Process Optimization	336
11.4	Distillation Case Studies	343
	11.4.1 Multicomponent Column Optimization with	
	Phase Changes	343
	11.4.2 Tray Optimization	345
11.5	Optimization of Hybrid Dynamic Systems	349
11.6	Dynamic MPCC Case Studies	352
	11.6.1 Reformulation of a Differential Inclusion	352
	11.6.2 Cascading Tank Problem	356
11.7	Summary and Conclusions	359
11.8	Notes for Further Reading	360
11.9	Exercises	361
Bibliography		363
Index		391