Inhaltsverzeichnis

Vorwort	zur	zweiten	englischen	Auflage	ΧI
10111016	~~,	T 44 CI LCII	CHEMISCHOM	Auliazo	711

Formeln und Abkürzungen XV

Teil I Grundlegende Konzepte und Lösungstechniken 1

1	Einleitung 3	
1.1	Ein einfaches Beispiel für nichtlineares Verhalten 3	
1.2	Wiederholung: Grundlagen der Linearen Algebra 5	
1.3	Vektoren und Tensoren 13	
1.4	Spannungs- und Dehnungstensor 19	
1.5	Elastizität 25	
1.6	Die PyFEM-Finite-Elemente-Bibliothek 27	
2	Nichtlineare Finite-Elemente-Analyse 33	
2.1	Gleichgewicht und virtuelle Arbeit 33	
2.2	Räumliche Diskretisierung mit finiten Elementen 35	
2.3	PyFEM-Programme für Ansatzfunktionen 40	
2.4	Inkrementell-iterative Analyse 44	
2.5	Lastkontrolle contra Verschiebungskontrolle 54	
2.6	PyFEM: ein linearer Finite-Elemente-Code	
	mit Verschiebungskontrolle 57	
3	Geometrische Nichtlinearität 67	
3.1	Trägerelemente 68	
3.1.1	Total-Lagrange-Formulierung 72	
3.1.2	Updated-Lagrange-Formulierung 75	
3.1.3	Korotierende Formulierung 77	
3.2	PyFEM: der flache Träger 80	
3.3	Spannungs- und Dehnungsmaße in Kontinua 90	
3.4	Geometrisch nichtlineare Formulierung für Kontinuumselemente	9

2 4 1	Total and Indeted Lagrange Farmanlianana 07
3.4.1 3.4.2	Total- und Updated-Lagrange-Formulierung 97
	Korotierende Formulierung 102
3.5	Lineare Knickanalyse 106
3.6	PyFEM: geometrisch nichtlineares Kontinuumselement 110
4	Lösungstechniken für quasistatische Analysen 119
4.1	Line-Search-Verfahren 119
4.2	Bogenlängenverfahren 122
4.3	PyFEM: Implementierung des Riks-Bogenlängen-Solvers 131
4.4	Stabilität und Eindeutigkeit in diskretisierten Systemen 136
4.4.1	Stabilität eines diskreten Systems 136
4.4.2	Eindeutigkeit und Bifurkation in einem diskreten System 138
4.4.3	Branch-Switching 142
4.5	Lastschrittweite und Konvergenzkriterien 143
4.6	Quasi-Newton-Methoden 146
5	Lösungsverfahren für die nichtlineare Dynamik 151
5.1	Semidiskrete Gleichungen 151
5.2	Explizite Zeitintegration 152
5. 3	
5.4	
_	Implizite Zeitintegration 162 Die Newmark-Familie 162
5.4.1	Die HHT-α-Methode 163
5.4.2 5.4.3	
5.4.5 5.5	Alternative implizite Methoden 166 Stabilität und Genauigkeit bei Nichtlinearitäten 167
5.6	Algorithmen mit Energieerhaltung 171
5.7	Zeitschrittkontrolle und Element-Technologie 174
J./	Zenschittkomfolie und Element-Jechnologie 174
	Teil II Material-Nichtlinearitäten 177
6	Schädigungsmechanik 179
6.1	Das Konzept der Schädigung 179
6.2	Isotrope elastische Schädigung 181
6.3	PyFEM: Ebene-Dehnung-Schädigungsmodell 185
6.4	Stabilität, Elliptizität und Gittersensitivität 189
6.4.1	Stabilität und Elliptizität 189
6.4.2	Gittersensitivität 193
6.5	Kohäsionszonenmodelle 197
6.6	Element-Technologie: Eingebettete Unstetigkeiten 202
6.7	Komplexe Schädigungsmodelle 210
6.7.1	Anisotrope Schädigungsmodelle 210
6.7.2	Mikroebenenmodelle 212
6.8	Rissmodelle für Beton und andere quasispröde Materialien 21-
6.8.1	Elastizitätsbasierte verschmierte Rissmodelle 214

6.8.2	Bewehrung und Zugversteifung 220
6.9	Regularisierte Schädigungsmodelle 224
6.9.1	Nichtlokale Schädigungsmodelle 225
6.9.2	Gradienten-Schädigungsmodelle 226
	•
7	Plastizität 231
7.1	Ein einfaches Gleitmodell 231
7.2	Fließtheorie der Plastizität 236
7.2.1	Die Fließfunktion 236
7.2.2	Fließregeln 241
7.2.3	Verfestigungsverhalten 245
7.3	Integration der Spannungs-Dehnungs-Relation 253
7.4	Tangenten-Steifigkeitsoperatoren 265
7.5	Multi-Fließflächen-Plastizität 268
7.5.1	Die Koiter'sche Verallgemeinerung 268
7.5.2	Rankine-Plastizität für Beton 270
7.5.3	Tresca- und Mohr-Coulomb-Plastizität 277
7.6	Bodenplastizität: Cam-Clay-Modell 285
7.7	Gekoppelte Schädigungs-Plastizitäts-Modelle 288
7.8	Element-Technologie: volumetrisches Locking 290
8	Zeitabhängige Stoffmodelle 297
8.1	Lineare Viskoelastizität 297
8.1.1	Eindimensionale lineare Viskoelastizität 298
8.1.2	Dreidimensionale Viskoelastizität 300
8.1.3	Algorithmische Aspekte 301
8.2	Kriechmodelle 304
8.3	Viskoplastizität 306
8.3.1	Eindimensionale Viskoplastizität 306
8.3.2	Integration der Ratengleichungen 309
8.3.3	Perzyna-Viskoplastizität 309
8.3.4	Duvaut-Lions-Viskoplastizität 312
8.3.5	Konsistenzmodell 314
8.3.6	Propagierende oder dynamische Instabilitäten 316
	Teil III Elementare Bauteile 323
9	Balken und Bögen 325
9.1	Ein flacher Bogen 325
9.1.1	Kirchhoff-Formulierung 325
9.1.2	Scherdeformation: der Timoshenko-Balken 333
9.2	PyFEM: ein Kirchhoff-Balkenelement 336
9.3	Korotierende Elemente 340
9.3.1	Kirchhoff-Modell 341

9.3.2	Timoshenko-Balken-Modell 346
9.4	Isoparametrisches entartetes Kontinuums-Balkenelement
	in zwei Dimensionen 348
9.5	Isoparametrisches entartetes Kontinuums-Balkenelement
7.3	in drei Dimensionen 354
	m dici biliciisionen 33.
10	Platten und Schalen 363
10.1	Flache-Schale-Formulierungen 364
10.1	Isoparametrisches entartetes Kontinuums-Schalenelement 372
10.2	Festkörperartige Schalenelemente 377
10.3	Plastizität bei Schalen: das Ilyushin-Kriterium 378
10.4	Flastizitat bei Schalen. das nyusinn-kintenum 378
	Teil IV Große Dehnungen 383
	Tell 17 Grose Bernangen 303
11	Hyperelastizität 385
11.1	Mehr Kontinuumsmechanik 385
11.1.1	Impulsbilanz und Spannungstensoren 385
11.1.2	Objektive Spannungsraten 389
11.1.3	Hauptstreckungen und Invarianten 394
11.2	Dehnungsenergiefunktionen 396
11.2.1	Inkompressibilität und Fastinkompressibilität 398
11.2.2	Dehnungsenergie als Funktion der Streckungsinvarianten 400
11.2.3	Dehnungsenergie als Funktion der Hauptstreckungen 404
11.2.4	Logarithmische Erweiterung der linearen Elastizität:
	das Hencky-Modell 409
11.3	Element-Technologie 411
11.3.1	u/p-Formulierung 412
11.3.2	Enhanced-assumed-Strain-Elemente 416
11.3.3	F-Ansatz 419
11.3.4	Korotierender Zugang 421
11.5.1	Nototierender Zugung 121
12	Elastoplastizität großer Dehnungen 423
12.1	Euler-Formulierungen 424
12.2	Multiplikative Elastoplastizität 430
12.3	Multiplikative Elastoplastizität und Ratenformulierungen 434
12.4	Integration der Ratengleichungen 438
12.5	Exponentielle Return-Mapping-Algorithmen 442
12.3	Exponential Result in Postumen 112
	Teil V Fortgeschrittene Diskretisierungskonzepte 449
13	Grenzflächen und Unstetigkeiten 451
13.1	Grenzflächenelemente 452
13.2	Unstetige Galerkin-Methoden 460

14	Gitterfreie Methoden und die Zerlegung der Eins 467
14.1	Gitterfreie Methoden 468
14.1.1	Die elementfreie Galerkin-Methode 469
14.1.2	Anwendung auf Bruchprozesse 473
14.1.3	Schädigungsmechanik höherer Ordnung 476
14.1.4	Volumetrisches Locking 477
14.2	Ansätze mit einer Zerlegung der Eins 479
14.2.1	Anwendung auf Bruchprozesse 483
14.2.2	Erweiterung auf große Deformationen 489
14.2.3	Bruchdynamik 494
14.2.4	Schwache Unstetigkeiten 497
15	Isogeometrische Finite-Elemente-Analyse 501
15.1	Basisfunktionen in der geometrischen Modellierung 501
15.1.1	Univariate B-Splines 503
15.1.2	Univariate NURBS 506
15.1.3	Multivariate B-Splines und NURBS-Patches 507
15.1.4	T-Splines 509
15.2	Isogeometrische finite Elemente 512
15.2.1	Bézier-Element-Darstellung 513
15.2.2	Bézier-Extraktion 515
15.3	PyFEM: Ansatzfunktionen für die isogeometrische Analyse 517
15.4	Isogeometrische Analyse in der nichtlinearen Festkörpermechanik 520
15.4.1	Design-through-Analysis für Schalenstrukturen 521
15.4.2	Schädigungsmodelle höherer Ordnung 527
15.4.3	· · ·
	Literatur 539

Literatur 539

Stichwortverzeichnis 559