Table of Contents

1. Introduction	1
1.1 The problem	1
1.2 Terminology and data representation	4
2. Algorithms / Policies	9
2.1 The canonical form: order-based and inventory-based policies	9
2.2 Examples	. 14
2.3 Anticipative (commitment-based) policies	. 17
2.4 Flexible commitment policies	20
2.5 Policies for queuing systems and traffic flow	. 21
3. Algorithmic Properties	25
3.1 Properness	25
3.2 Steady-state properties	. 28
4. Stability and Monotonicity Requirements	. 35
4.1 Types of stability	. 35
4.2 Stability analysis	. 38
4.3 Interpretation and examples	. 42
4.4 Some additional properties of linear, order-based policies	. 49
4.5 Duality: Serial queues and "push chains"	. 52
5. Strongly Stable Policies: The Act Method	. 55
5.1 The kinematic wave target	. 55
5.2 Discrete-time approximations of the KW target	. 63
5.2.1 General Results for Linear Targets	. 63
5.2.2 The ACT family	. 67
5.2.3 Properties of the linear ACT policy: linear case and JIT	72
systems	. 13
5.2.4 Properties of the AC1 policy: non-linear case	. 74
6. Cost Estimation and Optimization	. 79
6.1. Autonomous user-optimal operation with flexible commitments	3 80
6.2. Coordinated "system-optimum" operation: Optimization	. 85
6.2.1 Rigid operation: JIT systems	. 85
6.2.2. Flexible operation with "system-optimum" bounds	. 87

7. Discussion	
7.1 Extensions: Multi-commodity networks	
7.2 Application issues	101
References	103
Appendix A: Stability via Control Theory	107
Appendix B: Kinematic Wave Theory Revisited	
B.1 Preliminaries	111
B.2 The KW Theory Revisited	
B.3 Properties of the procedure	121