Contents

1	Gene	ral Introduction
	1.1	The Origin of Beeswax
	1.2	Nests and Nesting
	1.3	Self-Organization of Nest Contents
	1.4	Interspecific Utilisation of Beeswax
	1.5	Communication of Vibrations and Scents 4
	1.6	Wax Secretion, Comb Construction and the Queen 4
	1.7	The Significance of Brood 5
	1.8	The Role of Pollen in Comb Construction
	1.9	Nectar Flows and Comb-Building 6
	1.10	Construction of Combs
	1.11	Energetics of Honey/Beeswax Conversion
	1.12	Construction of Cells
	1.13	Conversion of Scale Wax into Combs
	1.14	Material Properties of Scale and Comb Wax 10
	1.15	The Wax Gland Complex 11
	1.16	The Chemistry of Beeswax 12
	1.17	Synthesis of Beeswax 12
	1.18	Material Properties of Honeybee Silk 13
	Refer	rences
2	Nesti	ng: Sites, Space and Density in Comb-Building 17
	2.1	Introduction
	2.2	Nesting Sites
		2.2.1 The Dwarf Honeybees
		2.2.2 The Cavity-Nesting Honeybees 19
		2.2.3 The Giant Honeybees
	2.3	Nest Cavities
	2.4	Colony Space and Density 24
		2.4.1 Arrangement of Space
		2.4.2 Density Versus Space

Con	te	n	ts
COn	ιc		1.0

		2.4.3	Reduction of Nest Size	28
		2.4.4	Other Qualities of "Space"	30
	2.5	Seasona	ality, Space and Density	32
	Refere	ences		34
3	Self-C)rganiza	ation of Nest Contents	41
	3.1	Introdu	ction	41
	3.2	Pattern	Formation in Combs	43
		3.2.1	Reaction–Diffusion Systems Pattern Formation	43
		3.2.2	Template Effects?	46
		3.2.3	Recent Models	47
	3.3	Develo	pmental Cycles of Apis florea Nests	50
	Refere	ences .		54
4	Intro	medific	and Interspecific Comh-Building	57
-	4 1	Introdu	ction	57
	т .1 Л Э	Intracne	ecific Comb Wax Salvage	58
	4.2	Intersp	ecific Wax Salvage	60
	4.J	Interen	ecific Wax Discrimination	62
	т. т 45	Comb	Building in Mixed Species Colonies	66
	4.5	451	Organisation of Mixed-Species Colonies	00
		4.5.1	and Way Foundation	66
		152	Cell Size and Wax Discrimination	67
		4.5.2	Cell Size Modification of Foundation Sheets	67
		4.5.5	Freely Built Combs	60
		4.5.4	Itilisation of the Newly Built Combs	73
		4.5.5	General Comb Building	73
		4.5.0	Comb Building in Mixed-Species Colonies	7/
	Refer	ences .	Comb-Bunding in Mixed-Species Colonies	75
5	Com	nunicat	ion by Vibrations and Scents in the Comb	79
	5.1	Introdu	ction	79
	5.2	Vibrati	ons	81
		5.2.1	Queen Honeybees	82
		5.2.2	Worker Vibrations	85
	5.3	Scents		93
		5.3.1	Waggle Dance Scent-marking: Probable Cause?	94
		5.3.2	Comb and Scents	95
		5.3.3	Capping Brood Cells.	97
	Refer	ences .		101
6	Wav	Secretic	on Comb Construction and the Queen	105
U	6 1	Introdu	netion	105
	6.2	The Qu	ueen: A Necessary Stimulus for Comb-Building?	105
		_		

	6.3	Comb-Building Experiments by Whiffler and	
		Hepburn (1991a)	108
		6.3.1 Queenright and Queenless Colonies	108
		6.3.2 Free-Running and Confined Queens	110
		6.3.3 Division Board Experiments	110
		6.3.4 General Conclusions from the Experiments	
		of Whiffler and Hepburn (1991a, b)	114
	6.4	Comb-Building Experiments of Ledoux et al. (2001)	116
	6.5	Perception of Queenrightness	117
	6.6	Comb-Building Experiments of Maisonnasse et al. (2010)	122
	6.7	The Construction of Queen Cells	123
	Refe	rences	127
7	The	Significance of Brood	131
	7.1	Introduction	131
	7.2	Parthenogenesis	132
	7.3	Oviposition by Queens	133
	7.4	The Meaning of Brood	134
	7.5	Efficacy of Open Brood	137
	7.6	Drone Brood	140
	7.7	Brood-Rearing and Honey Storage	141
	Refe	rences	142
8	The	Role of Pollen in Honeybee Colonies	145
	8.1	Pollen and Brood	145
	8.2	Pollen and Wax Production	149
	8.3	Physical Presence and Regulation of Pollen in the Colony	153
	8.4	Pollen Pheromones	157
	8.5	Pattern and Function of Pollen Cells.	160
	8.6	Cell Allocation	162
	Refe	rences	170
9	Nect	ar Flows and Comb-Building	175
	9.1	Introduction	175
	9.2	Temperate Zone Spring as a Stimulus	177
	9.3	Tropical Areas: Environmental-Based Construction	179
	9.4	Nectar, the Unqualified Stimulus for Comb Construction	183
		9.4.1 Hoarding Assays	185
		9.4.2 The Honey Stomach	189
	9.5	Decision-Making and Regulation of Comb-Building	189
	9.6	Who are the Comb Builders?	192
	9.7	Nectar Intake and Comb Fullness	197
	9.8	Termination of the Stimulus	199
	Dafa	rences	203
	Kele		205

Contents	
----------	--

10	Const	truction of Combs	207
	10.1	Introduction	207
	10.2	Parallelism Between Combs	208
	10.3	Festoons and Torsion	209
	10.4	Festoons and Comb Growth	213
	10.5	Evidence of a Sense of Equilibrium	215
	10.6	Application of the Sense of Equilibrium	217
	10.7	The Orientation of Combs	219
	10.8	Behavioural Aspects of Comb Construction	220
	Refer	ences	220
11	Energ	getics of Honey/Beeswax Conversion	223
	11.1	Introduction	223
	11.2	Cumulative Ratios	225
	11.3	Measures of Conversion Efficiency.	230
	11.4	Temperature and Wax Production.	235
	Refer	ences	235
12	Cons	truction of Cells	237
	12.1	Introduction	237
	12.2	Manipulation of Wax Scales	238
	12.3	Comb Operations	238
	12.5	Incention of the Nest	241
	12.4	Recognition of Cell Patterns	248
	12.5	Assessment of Cell Size	250
	12.0	The Cell Base: Changing from Rhombus to Hemisphere	254
	Refer	rences	256
13	Cons	version of Way Scales into Comb Way	259
15	13.1	Introduction	259
	13.1	Wax Scales	261
	13.2	Chemical Differences Between Scale and Comb Wax	261
	13.5	Meturation of Newly Constructed Combs	262
	12.4	Way Scales	266
	13.5	Wax Scales	260
	15.0 Defe		260
	Refer		207
14	Mate	erial Properties of Scale and Comb Wax	273
	14.1		213
	14.2	Temperature Effects	274
	14.3	Crystal Changes	277
	14.4	Tensile Properties	280
	14.5	Crystal Texture	285
	14.6	Wax Proteins	285

	14.7	ά-Helical Silk	287
	14.8	Optical Studies.	288
	14.9	X-ray Diffraction Studies.	289
	14.10	Crystallites of Beeswax	291
	14.11	Origins of Crystallites in Beeswax	295
	Refere	ences	296
15	The V	Wax Gland Complex	301
	15.1	Introduction	301
	15.2	Source of Secretion.	305
		15.2.1 The Cuticle	305
		15.2.2 The Epidermis	307
		15.2.3 Fat Body and Oenocytes	309
		15.2.4 Synchronising Cellular Activity	311
		15.2.5 Ultrastructure of the Organelles of Wax Gland	
		Cells	313
	Refere	ences	317
16	The (Chemistry of Beeswax	319
	16.1	Introduction	319
	16.2	Chemical Composition	320
	16.3	Chemometrics	323
		16.3.1 Chemometric Classification of Beeswaxes	325
		16.3.2 Discrimination and Classification of Beeswaxes	330
	16.4	The Proteins of Beeswax	334
	16.5	Plant-Derived Aromatic Volatiles and Colourants	
		in Beeswax	335
	Refer	ences	337
17	Synth	esis of Beeswax	341
	17.1	Introduction: Proof of Beeswax Synthesis	341
		17.1.1 François Huber (1814)	342
		17.1.2 The Chemists: Dumas and Edwards (1843)	343
	17.2	Routes of Synthesis	344
	17.3	Biochemical Investigations on Beeswax Synthesis	344
		17.3.1 Hypothetical Scheme for Beeswax Synthesis	344
		17.3.2 Monoester Synthesis	347
		17.3.3 Cuticular and Comb Waxes	348
	17.4	Cellular Basis of Synthesis	351
		17.4.1 Chemical Composition and the Ages of Worker	
		Bees	353
	17.5	Secretion of Beeswax	355
	Refer	ences	362

Ma	erial Properties of Honeybee Silk	- 30
18.	Introduction	30
18.2	Honeybee Silk: An ά-Helical Protein	30
18.3	Behaviour of Silk at Different Temperatures	3'
18.4	Relative Crystallinity	3
18.5	Solvent Effects on Silk	3
18.6	Honeybee Silk: An ά-Helical Silk and a Coiled-Coil	
	Protein	3
18.7	Molecular Dynamics of α -Helical Proteins.	3
18.8	Genetic Basis of Honeybee α -Helical Fibroin	3
Ref	erences	3