Contents

Preface to the 2nd Edition xi
Editor Biography xiii
Contributors xv

I
HIGH PRESSURE PROCESSING

1. High-Pressure Processing of Foods: An Overview
 YANG TAO, DA-WEN SUN, EAMONN HOGAN, ALAN L. KELLY
 1.1 Introduction 3
 1.2 Principles of HP Processing 3
 1.3 Use of HP to Improve Food Safety and Stability 7
 1.4 Effects of HP on Food Quality 12
 1.5 Other Applications of HP 15
 1.6 Modeling HP Processes 18
 1.7 Outlook for HP Processing of Food 19
 1.8 Conclusions 20

2. High-Pressure Processing of Salads and Ready Meals
 SRILATHA PANDRANG1, V.M. BALASUBRAMANIAM, YANG TAO, DA-WEN SUN
 2.1 Introduction 25
 2.2 Importance of Salads and Ready Meals 25
 2.3 Pressure Effects on Microorganisms 26
 2.4 The Effects of Pressure on Enzyme Activity 28
 2.5 The Effects of Pressure on Color 29
 2.6 The Effects of Pressure on Texture 29
 2.7 The Effects of Pressure on Nutrients 31
 2.8 Conclusions 31

3. High-Pressure Processing of Meats and Seafood
 FRÉDÉRIQUE DURANTON, HÉLÈNE SIMONIN, CLAIRE GUYON, STEPHANIE JUNG, MARIE DE LAMBALLERIE
 3.1 Introduction 35
 3.2 HPP Effect on the Texture and Water Retention of Meat and Seafood 35
 3.3 The Effect of HPP on Sensory Quality 41
 3.4 The Chemical Safety of Pressure-Treated Meat Products 47
 3.5 Pressure-Assisted Processes Applied to Meat and Seafood 49
 3.6 Conclusions 55

4. High-Pressure Processing of Fruits and Fruit Products
 SÓNIA MARILIA CASTRO, JORGE ALEXANDRE SARAIVA
 4.1 Introduction 65
 4.2 Physicochemical Parameters 66
 4.3 Color 68
 4.4 Texture 69
 4.5 Flavor 70
 4.6 Vitamins 71
 4.7 Microorganisms 72
 4.8 Conclusions 73

5. Microbiological Aspects of High-Pressure Processing
 MONTSERRAT MOR-MUR, ROGER ESCRIU, JOSEP YUSTE
 5.1 Introduction 77
 5.2 Effects of High Pressure 77
 5.3 Factors Affecting the Effectiveness of Treatment 80
 5.4 Conclusions 87

II
PULSED ELECTRIC FIELDS PROCESSING

6. Overview of Pulsed Electric Fields Processing for Food
 STEFAN TOEPFL, CLAUDIA SIEMER, GUILLERMO SALDAÑA-NAVARRO, VOLKER HEINZ
 6.1 Introduction 93
 6.2 Historical Background 93
 6.3 Mechanisms of Action 94
 6.4 PEF Treatment System 97
 6.5 Main Processing Parameters 100
 6.6 Applications 104
 6.7 Conclusions 108
 Nomenclature 108

7. Pulsed Electric Field Processing of Liquid Foods and Beverages
 MANSEL W. GRIFFITHS, MARKUS WALKLING-RIBEIRO
 7.1 Introduction 115
 7.2 PEF Technology 116
 7.3 Mechanisms of Microbial Inactivation 117
 7.4 Equipment 119
CONTENTS

7.5 PEF Treatment Variables 121
7.6 Target Differences 127
7.7 PEF-Based Nonthermal Hurdle Strategies 128
7.8 Specific Results on Liquid Foods 129
7.9 Process Models 136
7.10 Conclusions 137
Nomenclature 138

8. Effect of High-Intensity Electric Field Pulses on Solid Foods

STEFAN TOEPFL, CLAUDIA SIEMER, VOLKER HEINZ

8.1 Introduction 147
8.2 Principle and Analysis of Cell Disintegration by PEF 147
8.3 Effects on Solid Foods 148
8.4 Equipment and Energy Requirements 152
8.5 Conclusions 152

9. Enzymatic Inactivation by Pulsed Electric Fields

OLGA MARTÍN-BELLOSO, Á. ROBERT MARSELLÉS-FONTANET,
PEDRO ELEZ-MARTÍNEZ

9.1 Introduction 155
9.2 Mechanism of Enzyme Inactivation by PEF 155
9.3 Factors Affecting Enzyme Inactivation by PEF 156
9.4 Effects of PEF on Specific Enzymes 158
9.5 Modeling Enzymatic Inactivation by PEF 163
9.6 Enzyme Inactivation by Combining PEF with Other Hurdles 165
9.7 Enzyme Activity During Storage of PEF Processed Foods 165
9.8 Conclusions 165
Nomenclature 165

10. Food Safety Aspects of Pulsed Electric Fields

OLGA MARTÍN-BELLOSO, Á. ROBERT MARSELLÉS-FONTANET,
PEDRO ELEZ-MARTÍNEZ

10.1 Introduction 169
10.2 Microbiological Safety of PEF 170
10.3 Chemical Safety and PEFs 175
10.4 Conclusions 175
Nomenclature 176

III

OTHER NONTHERMAL PROCESSING TECHNIQUES

11. Recent Developments in Osmotic Dehydration

NAVIN K. RASTOGI, K.S.M.S. RAGHAVARAO, K. NIRANJAN

11.1 Introduction 181
11.2 Mechanism of Osmotic Dehydration 182
11.3 Effect of Process Parameters on Mass Transfer and Structure 184
11.4 Determination of Moisture and Solid Diffusion Coefficients 188

12. Athermal Membrane Processes for the Concentration of Liquid Foods and Natural Colors

K.S.M.S. RAGHAVARAO, M.C. MADHUSUDHAN,
A. HRISHIKESH TAVANANDI, K. NIRANJAN

12.1 Introduction 213
12.2 Existing Methods 213
12.3 Osmotic Membrane Distillation 215
12.4 Direct Osmosis 222
12.5 Membrane Modules 228
12.6 Applications 229
12.7 Integrated Membrane Processes 230
12.8 Suggestions for Future Work 232
12.9 Conclusions 233
Nomenclature 233

13. High-Intensity Pulsed Light Technology

DOMENICO CACACE, LUIGI PALMIERI

13.1 Introduction 239
13.2 Principles of PLT 239
13.3 Systems for PLT 241
13.4 Effects of PL on Microorganisms 243
13.5 Technological Aspects of PLT 245
13.6 Effects of PL on Food Quality and Components 254
13.7 Conclusions 255

FRANCISCO J. TRUJILLO, DAVID J. GEVEKE

14.1 Introduction 259
14.2 Radio Frequency Electric Fields Equipment 260
14.3 Modeling of Radio Frequency Electric Fields 263
14.4 RFEF Nonthermal Inactivation of Yeast 264
14.5 Bench Scale RFEF Inactivation of Bacteria and Spores 264
14.6 Pilot-Scale RFEF Inactivation of Bacteria 266
14.7 Electrical Costs 267
14.8 Conclusions 267

15. Application of Ultrasound

LARYSA PANIWNYK

15.1 Introduction 271
15.2 Fundamentals of Ultrasound 272
15.3 Ultrasound as a Food Preservation Tool 276
15.4 Ultrasound as a Processing Aid 279
15.5 Ultrasound Effects on Food Properties 286
15.6 Conclusions 288
16. Irradiation
MONIQUE LACROIX

16.1 Introduction 293
16.2 Definition of Irradiation 294
16.3 Gamma and X-ray Irradiation 295
16.4 UV Irradiation 297
16.5 Combined Treatments 298
16.6 Conclusions 307

17. New Chemical and Biochemical Hurdles
BRIJESH K. TIWARI

17.1 Introduction 313
17.2 Novel Antimicrobial Agents 313
17.3 Essential Oils 314
17.4 Antimicrobial Peptides 316
17.5 Novel Chemical Antimicrobial Agents 318
17.6 Quantification of Minimum and Noninhibitory Concentrations 320
17.7 Biochemical Hurdles 320
17.8 Conclusions 322

18. Decontamination of Foods by Cold Plasma
BRENDAN A. NIEMIRA

18.1 Introduction 327
18.2 The Chemistry of Cold Plasma 327
18.3 Low-Pressure Cold Plasmas 328
18.4 Atmospheric Pressure Cold Plasmas 330
18.5 Economics of Cold Plasma 332
18.6 Conclusions 332

19. Opportunities and Challenges in the Application of Ozone in Food Processing
B.S. PRIYANKA, NAVIN K. RASTOGI, BRIJESH K. TIWARI

19.1 Introduction 335
19.2 Physicochemical Properties 336
19.3 Ozonation Reactions 336
19.4 Generation of Ozone 337
19.5 Solubility of Ozone in Water 337
19.6 Methods for Mixing Ozone 338
19.7 Determination and Monitoring of Ozone 338
19.8 Critical Factors Affecting the Efficacy of Ozone 338
19.9 Application in Food Processing 339
19.10 Synergistic Effects of Ozone 353
19.11 Conclusions 354

IV
ALTERNATIVE THERMAL PROCESSING

20. Recent Developments in Microwave Heating
SEMIN O. OZKOC, GÜLÜM SUMNU, SERTİL SAHİN

20.1 Introduction 361
20.2 Dielectric Properties of Foods 361

20.3 Heat and Mass Transfer in Microwave Processing 362
20.4 Microwave Processing of Foods 363
20.5 Conclusions 377
Nomenclature 377

21. Radio-Frequency Processing
VALÉRIE ORSAT, G.S. VIJAYA RAGHAVAN

21.1 Introduction 385
21.2 Dielectric Heating 386
21.3 Material Properties 388
21.4 Adopting RF Heating 389
21.5 RF Heating Applications 392
21.6 RF Drying Applications 394
21.7 Conclusions 394
Nomenclature 395

22. Ohmic Heating
ADELINE GOULLIEUX, JEAN-PIERRE PAIN

22.1 Introduction 399
22.2 Fundamentals of Ohmic Heating 400
22.3 Electrical Conductivity 401
22.4 Generic Configurations 405
22.5 Modeling 407
22.6 Treatment of Products 414
22.7 Conclusions 420
Nomenclature 422

23. Combined Microwave Vacuum Drying
CHRISTINE H. SCAMAN, TIMOTHY D. DURANCE,
LIANA DRUMMOND, DA-WEN SUN

23.1 Introduction 427
23.2 Microwaves 428
23.3 Dielectric Properties of Food 429
23.4 Thermal Properties of Food 430
23.5 Characteristics of Microwave Vacuum Drying 430
23.6 Combination of Microwave Vacuum with Other Processes 436
23.7 Equipment 437
23.8 Modeling of Microwave Vacuum-Drying 438
23.9 Microwave Freeze-Drying 439
23.10 Other Applications of Microwave Vacuum Processing 440
23.11 Commercial Potential 441
23.12 Conclusions 441
Nomenclature 441

24. Recent Advances in Hybrid Drying Technologies
KIAN JON CHUA, SIAW KIANG CHOU

24.1 Introduction 447
24.2 Product Quality Degradation During Dehydration 447
24.3 Hybrid Drying Systems 449
24.4 Conclusions 457
25. Infrared Heating
ZHONGJI PAN, GRIFFITHS G. ATUNGULU, XUAN LI

25.1 Introduction 461
25.2 Fundamentals of IR Heating 461
25.3 Computational Modeling of IR Heating Process 464
25.4 Application of IR Heating for Food and Agricultural Processing 465
25.5 Outlook of IR Heating for Food and Agricultural Processing 471
25.6 Conclusions 472
Nomenclature 472

V
INNOVATIONS IN FOOD REFRIGERATION

26. Vacuum Cooling of Foods
LIANA DRUMMOND, LIYUN ZHENG, DA-WEN SUN

26.1 Introduction 477
26.2 Vacuum Cooling Principles, Process, and Equipment 477
26.3 Vacuum Cooling Applications in the Food Industry 480
26.4 Mathematical Modeling of Vacuum-Cooling Process 486
26.5 Advantages and Disadvantages of Vacuum Cooling 487
26.6 Factors Affecting Vacuum-Cooling Process 489
26.7 Conclusions 491
Nomenclature 491

27. Ultrasonic Assistance for Food Freezing
HOSSEIN KIANI, LIYUN ZHENG, DA-WEN SUN

27.1 Introduction 495
27.2 Power Ultrasound Generation and Equipment 496
27.3 Acoustic Effects on the Food Freezing Process 498
27.4 Factors Affecting Power Ultrasound Efficiency 507
27.5 Applications 509
27.6 Conclusions 511

28. High-Pressure Freezing
PEDRO D. SANZ, LAURA OTERO

28.1 Introduction 515
28.2 High Pressure for Freezing: Principles and Equipment 515
28.3 Types of High-Pressure Freezing Processes 517
28.4 Microbial and Enzymatic Inactivation after High-Pressure Freezing 524

29. Controlling the Freezing Process with Antifreeze Proteins
HANS RAMLOV, JOHANNES L. JOHNSEN

29.1 Introduction 539
29.2 Water as the Solvent of Life 539
29.3 The Physical Characteristics of Ice 540
29.4 Historical Review of AFP Research 544
29.5 Cold Tolerance in Cold-Blooded Animals 545
29.6 AFPs in Various Organisms 546
29.7 Types of AFP 547
29.8 Antifreeze Mechanism 550
29.9 Enhancement of Antifreeze Activity 553
29.10 The Use of AFP in Food Preservation 554
29.11 Physical and Chemical Characteristics of AFPs 555
29.12 Conclusions 556
Nomenclature 556

30. Freezing Combined with Electrical and Magnetic Disturbances
EPAMEINONDAS XANTHAKIS, ALAIN LE-BAIL, MICHEL HAVET

30.1 Introduction 563
30.2 Water Properties and Freezing 563
30.3 Phase Changes Under Electrical Disturbances 565
30.4 Magnetic Fields and Phase Change 566
30.5 Research on Freezing Under an Electric Field 567
30.6 Electro and Magnetic Electric Fields or Oscillating Electric Fields 574
30.7 Patent Search 575
30.8 Conclusions 577
Nomenclature 577

VI
MINIMAL PROCESSING

31. Minimal Processing of Fresh Fruit, Vegetables, and Juices
FRANCISCO ARTÉS, ANA ALLENDE

31.1 Introduction 583
31.2 Factors and Processing Operations that Affect the Quality of Minimally Processed Plant Foods 585
31.3 Emerging Technologies for Keeping the Microbial and Sensory Quality of MPFVs 589
31.4 Emerging Technologies for Minimally Processed Fresh Fruit Juices 591
31.5 Conclusions 593

32. Minimal Processing of Ready Meals
STEPHEN JAMES, CHRISTIAN JAMES

32.1 Introduction 599
32.2 Design of Total System 601
32.3 Cook-Chill 602
32.4 Cook-Freeze 603
32.5 Sous-Vide 603
32.6 Novel and Alternative Processing Options 605
32.7 Conclusions 611

33. Modified Atmosphere Packaging, for Minimally Processed Foods
ROBERT W. LENCKI

33.1 Introduction 613
33.2 Properties of Packaged Food 614
33.3 Properties of Packaging Materials 620
33.4 Modified Atmosphere Packaging Design 622
33.5 Conclusions 624
Nomenclature 624

Index 629