Contents

	1.1				
	1.1	Formulation of the Problem	4		
	1.2	Statement of Main Results	13		
	1.3	Summary of the Contents	18		
	1.4	Notes and Comments	30		
Par	t I I	Elements of Analysis			
2	Elen	nents of Probability Theory	35		
	2.1	Measurable Spaces and Functions	36		
		2.1.1 Measurable Spaces	36		
		2.1.2 Measures	40		
		2.1.3 Measurable Functions	43		
	2.2	Probability Spaces			
	2.3	Random Variables and Expectations			
	2.4	Independence	62		
		2.4.1 Independent Events	62		
		2.4.2 Independent Random Variables	63		
		2.4.3 Independent Algebras			
	2.5	Conditional Probabilities	71		
	2.6	Conditional Expectations			
	2.7	Notes and Comments			
3	Elements of Functional Analysis				
	3.1	Linear Operators and Functionals			
	3.2 Quasinormed Linear Spaces		100		
		3.2.1 Bounded Sets	103		
		3.2.2 Continuity of Linear Operators	103		
		3.2.3 Topologies of Linear Operators	103		
		3.2.4 The Banach–Steinhaus Theorem	104		
		3.2.5 Product Spaces	105		

XIV Contents

	3.3	Normed	d Linear Spaces	105
		3.3.1	Finite Dimensional Spaces	109
		3.3.2	The Hahn-Banach Extension Theorem	110
		3.3.3	Dual Spaces	114
		3.3.4	Annihilators	115
		3.3.5	Dual Spaces of Normed Factor Spaces	116
		3.3.6	Bidual Spaces	116
		3.3.7	Weak Convergence	117
		3.3.8	Weak* Convergence	117
		3.3.9	Transposes	118
	3.4	Continu	Lous Functions and Measures	119
		3.4.1	Spaces of Continuous Functions	119
		3.4.2	Space of Signed Measures	122
		3.4.3	The Riesz-Markov Representation Theorem	123
		3.4.4	Weak Convergence of Measures	134
	3.5		Operators	135
	3.6	Comple	emented Subspaces	136
	3.7		ct Operators	137
		3.7.1	Definition and Basic Properties of Compact	
			Operators	137
		3.7.2	The Riesz–Schauder Theory	138
	3.8	Fredho	Im Operators	140
		3.8.1	Definition and Basic Properties of Fredholm	
			Operators	140
		3.8.2	Stability Theorem for Indices of Fredholm Operators	141
	3.9	Notes a	and Comments	142
4	Theo	ry of Sei	migroups	143
•	4.1	Ranach	n Space Valued Functions	143
	4.2		or Valued Functions	145
	4.3		ential Functions	147
	4.4	•	ction Semigroups	149
		4.4.1	The Hille–Yosida Theory of Contraction Semigroups	149
		4.4.2	The Contraction Semigroup Associated	
		7.7.2	with the Heat Kernel	162
	4.5	The Hi	lle–Yosida Theory of (C_0) Semigroups	170
	7.5	4.5.1	Semigroups and Their Infinitesimal Generators	170
		4.5.2	Infinitesimal Generators and Their Resolvents	178
		4.5.3	The Hille-Yosida Theorem	185
		4.5.4	(C_0) Semigroups and Initial-Value Problems	192
	4.6		and Comments	196
	7.0	140000	MIN CVIIIIIOIM,,	

Contents xv

Theory of Distributions

201

Part II Elements of Partial Differential Equations

5

	5.1	Notatio	n	202
		5.1.1	Points in Euclidean Spaces	202
		5.1.2	Multi-indices and Derivations	202
	5.2	Functio	n Spaces	203
		5.2.1	<i>L</i> ^p Spaces	203
		5.2.2	Convolutions	204
		5.2.3	Spaces of C^k Functions	205
		5.2.4	The Space of Test Functions	207
		5.2.5	Hölder Spaces	208
		5.2.6	Friedrichs' Mollifiers	209
	5.3		ntial Operators	212
	5.4	Distribu	utions and the Fourier Transform	212
		5.4.1	Definitions and Basic Properties of Distributions	212
		5.4.2	Topologies on $\mathcal{D}'(\Omega)$	218
		5.4.3	The Support of a Distribution	218
		5.4.4	The Dual Space of $C^{\infty}(\Omega)$	220
		5.4.5	Tensor Products of Distributions	221
		5.4.6	Convolutions of Distributions	223
		5.4.7	The Jump Formula	225
		5.4.8	Regular Distributions with Respect to One Variable	226
		5.4.9	The Fourier Transform	228
		5.4.10	Tempered Distributions	232
		5.4.11	The Fourier Transform of Tempered Distributions	241
	5.5	Operate	ors and Kernels	254
		5.5.1	Schwartz's Kernel Theorem	256
		5.5.2	Regularizers	264
	5.6	Layer F	Potentials	267
		5.6.1	Single and Double Layer Potentials	267
		5.6.2	The Green Representation Formula	268
	5.7	Distrib	ution Theory on a Manifold	271
		5.7.1	Manifolds	271
		5.7.2	Distributions on a Manifold	275
		5.7.3	Differential Operators on a Manifold	277
		5.7.4	Operators and Kernels on a Manifold	278
	5.8	Domaii	ns of Class C'	279
	5.9	Notes a	and Comments	282
6	Sobo	lev and l	Besov Spaces	285
•	6.1		s Inequality	286
	6.2	-	v Spaces	288
	~· ~	6.2.1	First Definition of Sobolev Spaces	
		6.2.2	Second Definition of Sobolev Spaces	289

6.2.3

xvı Contents

	6.3	Definiti	ion of Besov Spaces on the Boundary	293
	6.4	Trace T	Theorems	298
	6.5	Notes a	and Comments	311
7	Thor	my of Dec	eudo-differential Operators	313
′	7.1		lds with Boundary and the Double of a Manifold	314
	7.1		on Spaces	317
	7.2		Integral Operators	320
	7.5	7.3.1	Symbol Classes	320
		7.3.1	Phase Functions.	322
		7.3.2	Oscillatory Integrals	324
		7.3.4	Definitions and Basic Properties of Fourier	J2 1
		1.5.4	Integral Operators	326
	7.4	Deaudo	-differential Operators	328
	7.7	7.4.1	Definitions of Pseudo-differential Operators	328
		7.4.1 7.4.2	Basic Properties of Pseudo-differential Operators	333
		7.4.2	Pseudo-differential Operators on a Manifold	337
		7.4.3 7.4.4	Hypoelliptic Pseudo-differential Operators	340
	7.5		als and Pseudo-differential Operators	341
	7.5 7.6		ansmission Property	344
	7.7		outet de Monvel Calculus	349
	7.7	7.7.1	Trace, Potential and Singular Green Operators	377
		7.7.1	on the Half-Space \mathbb{R}^n_{\perp}	349
		7.7.2	The Boutet de Monvel Algebra	351
	7.8		ution Kernel of a Pseudo-differential Operator	355
	7.8 7.9		and Comments	358
8	Wal		Pperators and Maximum Principles	361
	8.1		Kernels and Maximum Principles	361
		8.1.1	Linear Operators having Positive Borel Kernel	365
		8.1.2	Positive Borel Kernels	
			and Pseudo-Differential Operators	388.
	8.2	Maxim	num Principles for Waldenfels Operators	390
		8.2.1	The Weak Maximum Principle	
		8.2.2	The Strong Maximum Principle	
		8.2.3	The Hopf Boundary Point Lemma	401
	8.3	Notes	and Comments	408
Par	t III	Markov	v Processes, Semigroups and Boundary Value	
		Probler	ns	
9	Mar	kov Proc	cesses, Transition Functions and Feller Semigroups	411
	9.1	Marko	v Processes	412
		9.1.1	Definitions of Markov Processes	413
		9.1.2	Transition Functions	419
		9.1.3	Kolmogorov's Equations	426
			-	

Contents xvii

		9.1.4	Feller and C_0 Transition Functions	428
		9.1.5	Path Functions of Markov Processes	431
		9.1.6	Stopping Times	432
		9.1.7	Definition of Strong Markov Processes	437
		9.1.8	The Strong Markov Property and Uniform	
			Stochastic Continuity	438
	9.2	Feller S	Semigroups and Transition Functions	439
		9.2.1	Definition of Feller Semigroups	439
		9.2.2	Characterization of Feller Semigroups	
			in Terms of Transition Functions	440
	9.3	The Hil	lle-Yosida Theory of Feller Semigroups	447
		9.3.1	Generation Theorems for Feller Semigroups	448
		9.3.2	Generation Theorems for Feller Semigroups	
			in Terms of Maximum Principles	454
	9.4	Infinite	simal Generators of Feller Semigroups	
			ounded Domain (i)	455
	9.5		simal Generators of Feller Semigroups	
			ounded Domain (ii)	464
	9.6		and Comments	475
10	α.		ID I W.I D. II 6. W.II 6.1.	
10			nd Boundary Value Problems for Waldenfels	477
	-		ed en e Cita Duellan	477
	10.1		ation of the Problem	478
	10.2		eration Theorem for Feller Semigroups	405
	10.2		ounded Domain	487
	10.3		richlet Problem for Waldenfels Operators	489
		10.3.1	Existence and Uniqueness Theorem	489
		10.2.2	for the Dirichlet Problem	
	10.4	10.3.2	Proof of Theorem 10.4	489
	10.4		action of Feller Semigroups and Boundary Value	493
			ns	493
		10.4.1	Green Operators G_{α}^{0} and Harmonic Operators H_{α}	493
		10.4.2	Boundary Value Problems and Reduction	400
		10.4.2	to the Boundary	498
		10.4.3	A Generation Theorem for Feller Semigroups	500
	10.5	D	in Terms of Green Operators	509
	10.5		f Theorem 1.2	510
		10.5.1		510
	10.6	10.5.2	End of Proof of Theorem 1.2	523
	10.6		Solvability for Second-Order	505
			-differential Operators	525
		10.6.1	Fundamental Results for Second-Order	50
		10	Pseudo-differential Operators	
		10.6.2	Proof of Theorem 10.23	526

xvIII Contents

	10.7	The Symbol of the First-Order Pseudo-differential	
		Operator Π_{α}	534
	10.8	Notes and Comments	544
11	Proof		547
	11.1	The Space $C_0(\overline{D} \setminus M)$	549
	11.2	End of Proof of Theorem 1.3	550
	11.3	Notes and Comments	561
12		kov Processes Revisited	563
	12.1	Basic Definitions and Properties of Markov Processes	563
	12.2	Path-Continuity of Markov Processes	566
	12.3	Path-Continuity of Markov Processes Associated	
		with Semigroups	573
	12.4	Examples of Diffusion Processes on a Bounded Domain	576
		12.4.1 The Neumann Case	577
		12.4.2 The Robin Case	583
		12.4.3 The Oblique Derivative Case	586
	12.5	Notes and Comments	589
13	Conc	cluding Remarks	591
	13.1	Existence and Uniqueness Theorems for Boundary	
		Value Problems	592
	13.2	Generation Theorems for Analytic Semigroups	
		on a Bounded Domain	596
	13.3	The Integro-Differential Operator Case	599
	13.4	Notes and Comments	603
A	Boun	ndedness of Pseudo-differential Operators	605
	A.1	The Littlewood-Paley Series of a Tempered Distribution	605
	A.2	Peetre's Definition of Besov and Generalized Sobolev Spaces	607
	A.3	Non-regular Symbols	610
	A.4	The L^p Boundedness Theorem	615
	A.5	Proof of Proposition A.11	617
	A.6	Proof of Proposition A.12	623
		A.6.1 Proof of the Case $\delta = 1$	624
		A.6.2 Proof of the Case $0 \le \delta < 1$	633
В	The	Boutet de Monvel Calculus via Operator-Valued	
_		do-differential Operators	643
	B.1	Introduction	643
	B.2	Symbol Classes	643
	IJ.4	B.2.1 General Notation.	64:
		B.2.2 Group Actions	64
		B.2.3 Operator-Valued Symbols	648
		B.2.4 Duality	654
		B.2.5 Wedge Sobolev Spaces	65

Contents

B.3	The Tr	ansmission Property	658	
B.4	Symbo	l Classes for the Boutet de Monvel Calculus	670	
	B.4.1	The Operator ∂_+	670	
	B.4.2	Boundary Symbols on the Half-Space \mathbb{R}_{+}^{n}	670	
B.5		nalysis of Compositions	679	
	B.5.1	Decomposing $Op_{v_n}^+ p$	684	
		The Analysis of the Leftover Term		
B.6	Operat	ors on the Half-Space \mathbb{R}^n_+	692	
	B.6.1	Operators in the Boutet de Monvel Calculus	692	
	B.6.2	Outlook	699	
References				
Index			709	