Contents

Pai	rt I Basic Structural Principles	1
1.	The Building Blocks	3
	Proteins are polypeptide chains	4
	The genetic code specifies 20 different amino	
	acid side chains	4
	Cysteines can form disulfide bridges	5
	Peptide units are building blocks of protein	
	structures	8
	Glycine residues can adopt many different	
	conformations	9
	Certain side-chain conformations are	
	energetically favorable	10
	Many proteins contain intrinsic metal atoms	11
	Conclusion	12
	Selected readings	12
2.	Motifs of Protein Structure	13
	The interior of proteins is hydrophobic	14
	The alpha (α) helix is an important	
	element of secondary structure	14
	The α helix has a dipole moment	16
	Some amino acids are preferred in	
	α helices	16
	Beta (β) sheets usually have their β strands	
	either parallel or antiparallel	19
	Loop regions are at the surface of	
	protein molecules	21
	Schematic pictures of proteins highlight	
	secondary structure	22
	Topology diagrams are useful for classification	•
	of protein structures	23
	Secondary structure elements are connected	24
	to form simple motifs	24
	The hairpin β motif occurs frequently in	26
	protein structures	20
	The Greek key motif is found in antiparallel	27
	β sheets	21
	The β - α - β motif contains two parallel	27
	p strands	21
	biororoby	28
	Interarchy Large polymentide chains fold into several	20
	domains	29
	domains	27

	Domains are built from structural motifs	30
	Simple motifs combine to form complex motifs	30
	Protein structures can be divided into	
	three main classes	31
	Conclusion	32
	Selected readings	33
	Selected readings	55
3.	Alpha-Domain Structures	35
	Coiled-coil α helices contain a repetitive	
	heptad amino acid sequence pattern	35
	The four-helix bundle is a common domain	
	structure in α proteins	37
	Alpha-helical domains are sometimes large	
	and complex	39
	The globin fold is present in myoglobin and	
	hemoglobin	40
	Geometric considerations determine	
	a-helix nacking	40
	Pidges of one a belix fit into grooves of an	10
	adjacent helix	40
	The globin fold has been preserved during	10
	avolution	41
	The hydrophobic interior is preserved	42
	Heliy meyements accommedate interior	72
	side shein mutations	12
	Side-chain inutations	43
	Sickle-cell hemoglobin confers resistance	40
	to malaria	43
	Conclusion	45
	Selected readings	45
4	Alpha/Reta Structures	47
	Parallel & strands are arranged in barrels	
	or sheets	47
	Alpha/beta barrels occur in many different	17
	angumes	48
	Branched hydronhobic side chains dominate	-10
	the core of α/β harrols	40
	Directle of 0/p ballels	47
	ryiuvate killase contains several donianis,	51
	Develo horrole have accurred by some	51
	Double barrels have occurred by gene	c 2
	IUSION	52
	The active site is formed by loops at one	
	end of the α/β barrel	53

ix

	Alpha/beta barrels provide examples of
	evolution of new enzyme activities
	Leucine-rich motifs form an α/β -horseshoe
	fold
	Alpha/beta twisted open-sheet structures
	contain α helices on both sides of the
	β sheet
	Open B-sheet structures have a variety
	of topologies
	The positions of active sites can be predicted
	in α/β structures
	Tyrosyl-tRNA synthetase has two different
	domains $(\alpha/\beta + \alpha)$
	Carboxypentidase is an α/β protein with a
	mixed B sheet
	Arabinose-binding protein has two similar
	a/B domains
	Conclusion
	Conclusion Selected readings
	Selected leadings
_	
5.	Beta Structures
	Up-and-down barrels have a simple topology
	The retinol-binding protein binds retinol
	inside an up-and-down β barrel
	Amino acid sequence reflects β structure
	The retinol-binding protein belongs to a
	superfamily of protein structures
	Neuraminidase folds into up-and-down β sheets
	Folding motifs form a propeller-like structure
	in neuraminidase
	The active site is in the middle of one side of
	the propeller
	Greek key motifs occur frequently in
	antiparallel β structures
	The γ-crystallin molecule has two domains
	The domain structure has a simple topology
	Two Greek key motifs form the domain
	The two domains have identical topology
	The two domains have similar structures
	The Greek key motifs in γ crystallin are
	evolutionarily related
	The Greek key motifs can form jelly roll barrels
	The jelly roll motif is wrapped around a barrel
	The jelly roll barrel is usually divided into
	two sheets
	The functional hemagglutinin subunit has two
	polypeptide chains
	The subunit structure is divided into a stem
	and a tip
	The receptor binding site is formed by the
	jelly roll domain
	Hemagglutinin acts as a membrane fusogen
	The structure of hemagglutinin is affected
	by pH changes
	Parallel β -helix domains have a novel fold
	Conclusion
	Selected readings
	-
6.	Folding and Flexibility
	Globular proteins are only marginally stable
	Kinetic factors are important for folding
	Molten globules are intermediates in folding
	Burying hydrophobic side chains is a key event
	/

	Delle to the solution of the solutions	
	Both single and multiple folding pathways	0.2
	nave been observed	93
	Enzymes assist formation of proper distinue	06
	Isomerization of proline residues can be	90
	a rate-limiting step in protein folding	98
	Proteins can fold or unfold inside chaperonins	99
	GroEL is a cylindrical structure with a	
	central channel in which newly synthesized	
	polypeptides bind	100
	GroES closes off one end of the GroEL cylinder	102
	The GroEL–GroES complex binds and	
	releases newly synthesized polypeptides	
	in an ATP-dependent cycle	102
	The folded state has a flexible structure	104
	Conformational changes in a protein kinase	
	are important for cell cycle regulation	105
	Peptide binding to calmodulin induces a	
	large interdomain movement	109
	Serpins inhibit serine proteinases with	
	a spring-loaded safety catch mechanism	110
	Effector molecules switch allosteric proteins	440
	between R and T states	113
	X-ray structures explain the allosteric	114
	properties of phosphotructokinase	114
	Conclusion Selected readings	11/
	Selected readings	119
7	DNA Structures	121
7.	The DNA double belix is different in A- and	121
	B-DNA	121
	The DNA helix has major and minor grooves	122
	Z-DNA forms a zigzag pattern	123
	B-DNA is the preferred conformation <i>in vivo</i>	124
	Specific base sequences can be recognized	
	in B-DNA	124
	Conclusion	125
	Selected readings	126
_		
Pat	t 2 Structure, Function, and Engineering	127
8.	DNA Recognition in Procaryotes by	1 20
	Helix-Turn-Helix Motifs	129
	A molecular mechanism for gene control	129
	Repressor and Cro proteins operate a procaryotic	
		130
	genetic switch region	130
	genetic switch region The x-ray structure of the complete lambda	130 131
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA binding	130 131
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda represent is known	130 131 132
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins	130 131 132
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif	130131132133
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro-DNA interactions	 130 131 132 133 134
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model	 130 131 132 133 134 135
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with	 130 131 132 133 134 135
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel	 130 131 132 133 134 135
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions	 130 131 132 133 134 135 136
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions The structures of 434 Cro and the 434	 130 131 132 133 134 135 136
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions The structures of 434 Cro and the 434 repressor DNA-binding domain are very	 130 131 132 133 134 135 136 137
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions The structures of 434 Cro and the 434 repressor DNA-binding domain are very similar	 130 131 132 133 134 135 136 137
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions The structures of 434 Cro and the 434 repressor DNA-binding domain are very similar The proteins impose precise distortions on	 130 131 132 133 134 135 136 137 132
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions The structures of 434 Cro and the 434 repressor DNA-binding domain are very similar The proteins impose precise distortions on the B-DNA in the complexes	 130 131 132 133 134 135 136 137 138
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions The structures of 434 Cro and the 434 repressor DNA-binding domain are very similar The proteins impose precise distortions on the B-DNA in the complexes Sequence-specific protein–DNA interactions	 130 131 132 133 134 135 136 137 138 138 138
	genetic switch region The x-ray structure of the complete lambda Cro protein is known The x-ray structure of the DNA-binding domain of the lambda repressor is known Both lambda Cro and repressor proteins have a specific DNA-binding motif Model building predicts Cro–DNA interactions Genetic studies agree with the structural model The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein–DNA interactions The structures of 434 Cro and the 434 repressor DNA-binding domain are very similar The proteins impose precise distortions on the B-DNA in the complexes Sequence-specific protein–DNA interactions recognize operator regions	 130 131 132 133 134 135 136 137 138 138

	Protein–DNA backbone interactions determine	
	DNA conformation	139
	conformational changes of DNA are	
	and Cro to different operator sites	140
	The essence of phage repressor and Cro	141
	DNA binding is regulated by allosteric control	142
	The <i>trp</i> repressor forms a helix-turn-helix motif	142
	A conformational change operates a	
	functional switch	142
	Lac repressor binds to both the major and minor	142
	CAP-induced DNA bending could activate	145
	transcription	146
	Conclusion	147
	Selected readings	148
9.	DNA Recognition by Eucaryotic	
	Transcription Factors	151
	Transcription is activated by protein-protein	
	interactions	152
	The TATA box-binding protein is ubiquitous	153
	The three-dimensional structures of	154
	$\Delta \beta$ sheet in TRP forms the DNA-binding site	154
	TBP binds in the minor groove and induces	
	large structural changes in DNA	155
	The interaction area between TBP and the	
	TATA box is mainly hydrophobic	157
	Functional implications of the distortion of	
	DNA by TBP	158
	TFIIA and TFIIB bind to both TBP and DNA	159
	Homeodomain proteins are involved in the	150
	Monomers of homeodomain proteins hind	139
	to DNA through a helix-turn-helix motif	160
	In vivo specificity of homeodomain	
	transcription factors depends on interactions	
	with other proteins	162
	POU regions bind to DNA by two tandemly	
	oriented helix-turn-helix motifs	164
	homodomains to be learnt about the function of	166
	Understanding tymorigenic mutations	166
	The monomeric p53 polypeptide chain is	100
	divided in three domains	167
	The oligomerization domain forms tetramers	167
	The DNA-binding domain of p53 is an	
	antiparallel β barrel	168
	Two loop regions and one α helix of p53 bind	
	to DNA	169
	Tumorigenic mutations occur mainly in three	170
	regions involved in DINA diffulling	172
	Selected readings	172
10.	Specific Transcription Factors Belong	175
	to a few families	176
	motifs have been observed	170
	The classic zinc fingers bind to DNA in tandem	177
	along the major groove	

The finger region of the classic zinc finger motif interacts with DNA Two zinc-containing motifs in the	178
glucocorticoid receptor form one DNA-binding domain	181
A dimer of the glucocorticoid receptor binds to DNA	183
An α helix in the first zinc motif provides the specific protein–DNA interactions	184
the sequence-specific interactions with DNA The retinoid X recentor forms beterodimers	184
that recognize tandem repeats with variable spacings	185
Yeast transcription factor GAL4 contains a binuclear zinc cluster in its DNA-binding	
domain The zinc cluster regions of GAL4 bind at the	187
The linker region also contributes to DNA	188
DNA-binding site specificity among the C ₆ -zinc cluster family of transcription factors is	109
achieved by the linker regions Families of zinc-containing transcription	190
factors bind to DNA in several different ways Leucine zippers provide dimerization interactions for some eucarvotic	191
transcription factors The GCN4 basic region leucine zipper binds	191
DNA as a dimer of two uninterrupted α helices CCN4 binds to DNA with both specific and	193
nonspecific contacts The HLH motif is involved in homodimer	194
and heterodimer associations The α-helical basic region of the b/HLH	196
motif binds in the major groove of DNA The b/HLH/zip family of transcription factors have both HLH and leucine zinner	198
dimerization motifs Max and MyoD recognize the DNA HLH	199
protein–DNA interactions	201
Conclusion	201
Selected readings	203
11. An Example of Enzyme Catalysis:	205
Proteinases form four functional families	205
The catalytic properties of enzymes are reflected in K_m and k_{cat} values	206
Enzymes decrease the activation energy of	
chemical reactions Serine proteinases cleave peptide bonds by	206
forming tetrahedral transition states	208
for the catalytic action of serine proteinases Convergent evolution has produced two	209
catalytic mechanisms The chymotrypsin structure has two antiparallel	210
β-barrel domains	210

The active site is formed by two loop regions from each domain	211
Did the chymotrypsin molecule evolve by	010
gene duplication? Different side chains in the substrate	212
specificity pocket confer preferential	212
cleavage Engineered mutations in the substrate	212
specificity pocket change the rate of catalysis	213
unexpected changes in substrate specificity	215
The structure of the serine proteinase subtilisin is of the α/β type	215
The active sites of subtilisin and chymotrypsin	210
are similar A structural anomaly in subtilisin has	216
functional consequences	217
Transition-state stabilization in subtilisin is	
dissected by protein engineering	217
Catalysis occurs without a catalytic triad	217
Substrate molecules provide catalytic groups	
in substrate-assisted catalysis	218
Conclusion	219
Selected readings	220
12. Membrane Proteins	223
Membrane proteins are difficult to crystallize	224
Novel crystallization methods are being	
developed	224
Two-dimensional crystals of membrane	
proteins can be studied by electron	
microscopy	225
Bacteriorhodopsin contains seven	226
Bacteriorhodonsin is a light-driven proton	220
numn	227
Poring form transmembrane channels by	
β strands	228
Porin channels are made by up and down	
β barrels	229
Each porin molecule has three channels	230
Ion channels combine ion selectivity with	
high levels of ion conductance	232
The K ⁺ channel is a tetrameric molecule with	
one ion pore in the interface between the	7 27
tour subunits	232
The heaterial photosynthetic reaction contor	200
is built up from four different polypoptide	
chains and many nigments	234
The L M and H subunits have transmembrane	
α helices	236
The photosynthetic pigments are bound to the	·
L and M subunits	237
Reaction centers convert light energy into	
electrical energy by electron flow through	220
the memorane	239
multimeric light harvesting particles	240
Chlorophyll molecules form circular rings	210
in the light-harvesting complex LH2	241
The reaction center is surrounded by a ring of 16	
The reaction center is surrounded by a fing of 10	
antenna proteins of the light-harvesting	

	Transmembrane α helices can be predicted from amino acid sequences	244
	of hydrophobicity scales measure the degree of hydrophobicity of different amino acid	245
	Hydropathy plots identify transmembrane helices	245
	Reaction center hydropathy plots agree with crystal structural data	246
	Membrane lipids have no specific interaction with protein transmembrane α helices	246
	Selected readings	247 248
13.	Signal Transduction	251
	G proteins are molecular amplifiers	252
	of G_{α} have similar three-dimensional structures	254
	G_{α} is activated by conformational changes of three switch regions	257
	GTPases hydrolyze GTP through nucleophilic	259
	The G_B subunit has a seven-blade propeller fold,	207
	built up from seven WD repeat units The GTPase domain of G_{α} binds to G_{β} in the	261
	heterotrimeric $G_{\alpha\beta\gamma}$ complex	263
	retinal rods	265
	Phosducin binding to $G_{\beta\gamma}$ blocks binding of G_{α}	265
	The human growth hormone induces	267
	dimerization of its cognate receptor	267
	is a sequential process	268
	The growth hormone also binds to the	
	prolactin receptor	269
	enzyme-linked receptors	270
	Small protein modules form adaptors for a	
	signaling network	272
	SH2 domains bind to phosphotyrosine-	273
	SH3 domains bind to proline-rich regions of	215
	target molecules	274
	Src tyrosine kinases comprise SH2 and SH3	075
	domains in addition to a tyrosine kinase	275
	inactive state are held in a closed	
	conformation by assembly of the	
	regulatory domains	277
	Conclusion Selected readings	278
	beleted readings	200
14.	Fibrous Proteins	283
	Collagen is a superhelix formed by three	284
	Coiled coils are frequently used to form	207
	oligomers of fibrous and globular proteins	286
	Amyloid fibrils are suggested to be built up	200
	IFOM CONTINUOUS β sheet helices Spider silk is nature's high performance fiber	∠88 289
	Muscle fibers contain myosin and actin which	
	slide against each other during muscle	
	contraction	290

Myosin heads form cross-bridges between the	
actin and myosin filaments	291
Time-resolved x-ray diffraction of frog muscle	
confirmed movement of the cross-bridges	292
Structures of actin and myosin have been	
determined	293
The structure of myosin supports the swinging	
cross-bridge hypothesis	295
The role of ATP in muscular contraction has	
parallels to the role of GTP in G-protein	
activation	296
Conclusion	297
Selected readings	298

15. Recognition of Foreign Molecules by the Immune System

Immune System	299
The polypeptide chains of antibodies are	
divided into domains	300
Antibody diversity is generated by several	
different mechanisms	302
All immunoglobulin domains have similar	
three-dimensional structures	303
The immunoglobulin fold is best described as	
two antiparallel β sheets packed tightly	
against each other	304
The hypervariable regions are clustered	
in loop regions at one end of the	205
variable domain	305
The antigen-binding site is formed by close	
association of the hypervariable regions	201
The aptigen hinding site hinds hentens in	300
The antigen-binding site binds haptens in	
flat surfaces	200
The CDP loops assume only a limited range	500
of conformations except for the heavy	
chain CDR3	311
An IgG molecule has several degrees of	511
conformational flexibility	312
Structures of MHC molecules have provided	
insights into the molecular mechanisms	
of T-cell activation	312
MHC molecules are composed of antigen-	
binding and immunoglobulin-like domains	313
Recognition of antigen is different in MHC	
molecules compared with immunoglobulins	314
Peptides are bound differently by class I and	
class II MHC molecules	315
T-cell receptors have variable and constant	
immunoglobulin domains and	
hypervariable regions	316
MHC–peptide complexes are the ligands for	210
T-cell receptors	318
Many cell-surface receptors contain	210
immunoglobulin-like domains.	318
Conclusion	320
Selected readings	321
The Structure of Scherical Viruses	325
The protein shells of spherical viruses have	020
icosahedral symmetry	327
The icosahedron has high symmetry	327
The simplest virus has a shell of 60 protein	
subunits	328

16.

	Complex spherical viruses have more than one	
	polypeptide chain in the asymmetric unit	329
	Structural versatility gives quasi-equivalent	0.04
	packing in $T = 3$ plant viruses	331
	of the PNA incide the shell	
	The protein capsid of picornaviruses contains	332
	four polypentide chains	222
	There are four different structural proteins in	555
	picornaviruses	334
	The arrangement of subunits in the shell of	001
	picornaviruses is similar to that of $T = 3$	
	plant viruses	334
	The coat proteins of many different spherical	
	plant and animal viruses have similar	
	jelly roll barrel structures, indicating an	
	evolutionary relationship	335
	Drugs against the common cold may be	227
	Restorionhage MS2 has a different subunit	337
	structure	220
	A dimer of MS2 subunits recognizes an RNA	339
	nackaging signal	339
	The core protein of alphavirus has a	005
	chymotrypsin-like fold	340
	SV40 and polyomavirus shells are constructed	
	from pentamers of the major coat protein	
	with nonequivalent packing but largely	
	equivalent interactions	341
	Conclusion	343
	Selected readings	344
17.	Prediction, Engineering, and Design of	
	Protein Structures	347
	Protein Structures Homologous proteins have similar structure	347
	Protein Structures Homologous proteins have similar structure and function	347 348
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural	347 348
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions	347 348 349
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary	347 348 349
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure	347348349350
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of	347 348 349 350
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins	 347 348 349 350 251
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give	 347 348 349 350 351
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures	 347 348 349 350 351 352
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence	 347 348 349 350 351 352
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem	 347 348 349 350 351 352 352
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid	 347 348 349 350 351 352 352
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds	 347 348 349 350 351 352 352 352 353
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by	 347 348 349 350 351 352 352 353
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering	 347 348 349 350 351 352 352 353 354
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability	347 348 349 350 351 352 352 353 354 355
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on	347 348 349 350 351 352 352 353 354 355
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability	 3447 348 349 350 351 352 352 353 354 355 356
	 Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases estability 	 3447 348 349 350 351 352 352 353 354 355 356 257
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores	 3447 348 349 350 351 352 352 353 354 355 356 357
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme	347 348 349 350 351 352 352 353 354 355 356 357 358
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme Proteins can be engineered by combinatorial	 3447 348 349 350 351 352 352 353 354 355 356 357 358
	 Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme Proteins can be engineered by combinatorial methods 	347 348 349 350 351 352 352 353 354 355 356 357 358 358
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme Proteins can be engineered by combinatorial methods Phage display links the protein library	 3447 348 349 350 351 352 352 353 354 355 356 357 358 358
	Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme Proteins can be engineered by combinatorial methods Phage display links the protein library to DNA	347 348 349 350 351 352 352 352 353 354 355 356 357 358 358 358 358
	Protein StructuresHomologous proteins have similar structure and functionHomologous proteins have conserved structural cores and variable loop regionsKnowledge of secondary structure is necessary for prediction of tertiary structurePrediction methods for secondary structure benefit from multiple alignment of homologous proteinsMany different amino acid sequences give similar three-dimensional structuresPrediction of protein structure from sequence is an unsolved problemThreading methods can assign amino acid sequences to known three-dimensional foldsProteins can be made more stable by engineeringDisulfide bridges increase protein stabilityGlycine and proline have opposite effects on stabilityStabilizing the dipoles of α helices increases do not stabilize T4 lysozymeProteins can be engineered by combinatorial methodsPhage display links the protein library to DNAAffinity and specificity of proteinase inhibitors	 3447 348 349 350 351 352 352 353 354 355 356 357 358 358 359
	Protein StructuresHomologous proteins have similar structure and functionHomologous proteins have conserved structural cores and variable loop regionsKnowledge of secondary structure is necessary for prediction of tertiary structurePrediction methods for secondary structure benefit from multiple alignment of homologous proteinsMany different amino acid sequences give similar three-dimensional structuresPrediction of protein structure from sequence is an unsolved problemThreading methods can assign amino acid sequences to known three-dimensional foldsProteins can be made more stable by engineeringDisulfide bridges increase protein stabilityGlycine and proline have opposite effects on stabilityStabilizing the dipoles of α helices increases do not stabilize T4 lysozymeProteins can be engineered by combinatorial methodsPhage display links the protein library to DNAAffinity and specificity of proteinase inhibitors can be optimized by phage display	 3447 348 349 350 351 352 352 353 354 355 356 357 358 358 359 361

	Structural scaffolds can be reduced in size		
	while function is retained	363	
	Phage display of random peptide libraries		
	identified agonists of erythropoetin receptor	364	
	DNA shuffling allows accelerated evolution		
	of genes	365	
	Protein structures can be designed from first		
	principles	367	
	A β structure has been converted to an α structure		
	by changing only half of the sequence	368	
	Conclusion	370	
	Selected readings	371	
18.	Determination of Protein Structures	373	
	Several different techniques are used to study		
	the structure of protein molecules	373	
	Protein crystals are difficult to grow	374	
	X-ray sources are either monochromatic or	374	
	X-ray sources are either monochromatic or polychromatic	374 376	
	X-ray sources are either monochromatic or polychromatic X-ray data are recorded either on image plates	374 376	
	X-ray sources are either monochromatic or polychromatic X-ray data are recorded either on image plates or by electronic detectors	374 376 377	
	 A ray sources are either monochromatic or polychromatic X-ray data are recorded either on image plates or by electronic detectors The rules for diffraction are given by Bragg's law 	374 376 377 378	
	 Array sources are either monochromatic or polychromatic X-ray data are recorded either on image plates or by electronic detectors The rules for diffraction are given by Bragg's law Phase determination is the major 	374 376 377 378	
	 Protein crystals are difficult to grow X-ray sources are either monochromatic or polychromatic X-ray data are recorded either on image plates or by electronic detectors The rules for diffraction are given by Bragg's law Phase determination is the major crystallographic problem 	 374 376 377 378 379]
	 Protein crystals are difficult to grow X-ray sources are either monochromatic or polychromatic X-ray data are recorded either on image plates or by electronic detectors The rules for diffraction are given by Bragg's law Phase determination is the major crystallographic problem Phase information can also be obtained by 	374 376 377 378 379]
	 Protein crystals are difficult to grow X-ray sources are either monochromatic or polychromatic X-ray data are recorded either on image plates or by electronic detectors The rules for diffraction are given by Bragg's law Phase determination is the major crystallographic problem Phase information can also be obtained by Multiwavelength Anomalous Diffraction 	374 376 377 378 379	
	 Protein crystals are difficult to grow X-ray sources are either monochromatic or polychromatic X-ray data are recorded either on image plates or by electronic detectors The rules for diffraction are given by Bragg's law Phase determination is the major crystallographic problem Phase information can also be obtained by Multiwavelength Anomalous Diffraction experiments 	 374 376 377 378 379 381 	

Building a model involves subjective	
interpretation of the data	381
Errors in the initial model are removed	
by refinement	383
Recent technological advances have greatly	
influenced protein crystallography	383
X-ray diffraction can be used to study the	
structure of fibers as well as crystals	384
The structure of biopolymers can be studied	
using fiber diffraction	386
NMR methods use the magnetic properties of	
atomic nuclei	387
Two-dimensional NMR spectra of proteins are	
interpreted by the method of sequential	
assignment	389
Distance constraints are used to derive possible	
structures of a protein molecule	390
Biochemical studies and molecular	
structure give complementary functional	
information	391
Conclusion	391
Selected readings	392
Protein Structure on the World Wide Web	393