Inhaltsverzeichnis

Dank sa gun	g	III
Kurzzusam	menfassung	V
Abstract		VI
Abkürzung	en	VII
Formelzeicl	hen ,	iX
inhaltsverz	eichnis	
1	Einleitung und Stand der Technik	
2	Enzymatische Hydrolyse von Cellulose	5
2.1	Einleitung und Zielsetzung	5
2.2	Theoretische Grundlagen	7
2.2.1	Hydrolyse von Cellulose	7
2.2.2	Immobilisierte Biokatalysatoren	11
2.2.3	Einsatz immobilisierter Cellulasen	14
2.2.4	Magnetische Eigenschaften von Eisenoxid-Nanopartikeln	19
2.2.5	Optische Eigenschaften der Partikel	22
2.3	Synthese und Charakterisierung der Fe ₃ O ₄ /Au-Trägerpartikel	27
2.3.1	Stand der Technik	27
2.3.2	Weiterführende Charakterisierung der Eisenoxid-Kerne	32
2.4	Immobilislerung von Cellulase auf Eisenoxid/Gold-Trägerpartikeln	37
2.4.1	Stand der Technik - Immobilisierung durch Selbstorganisation	37
2.4.2	Selbstorganisierte Bindung von Enzymen	41
2.4.3	Quantifizierung der Immobilisierten Cellulase	43
2 .5	Modellsystem der enzymatischen Hydrolyse von Cellulose	49
2.5.1	Hydrolyse von Carboxymethylcellulose und fibröser Cellulose	49
2.5.2	Hydrolyse in mehreren Zyklen	53
2.6	Zusammenfassung	55
3	Katalytische Oxidation von Glucose zu Gluconsäure	59
3.1	Einleitung und Zielsetzung	59
3.2	Theoretische Grundlagen	61
3.2.1	Industrielle Gewinnung von Gluconsäure	61
3.2.2	Katalytische Oxidation an Edelmetallkatalysatoren	65
3.2.3	Katalytischer Mechanismus der Glucoseoxidation	69
3.2.4	PCD (Particle-Charge-Detector)	73
3.3	Synthese und Charakterisierung geträgerter Goldkatalysatoren	7

ΧI

3.3.1	Silanisierte Trägerpartikel	77
3.3.2	Träger auf Aluminiumoxidbasis	81
3.4	Katalytische Aktivität	89
3.4.1	Vergleich der magnetischen Katalysatoren	89
3.4.2	Syntheseoptimierung auf Al2O3-Trägermaterial	94
3.4.3	Reaktionsverlauf im 500 ml Maßstab	98
3.4.4	Upscaling in einen 1 L Bioreaktor	101
3.4.5	Langzeitstabilität des Biokatalysators im 1 L Bioreaktor	105
3.4.6	Übertragung der Synthesemethode auf magnetisches Trägermaterial	109
3.4.7	Goldkatalyse im Durchfluss	112
3.4.8	Magnetische Wirbelschicht in der kontinuierlichen katalytischen Produkt Gluconsäure	
3.5	Zusammenfassung und Ausblick	121
4	Aufarbeitung von fermentativ gewonnenen Antibiotika	127
4.1	Einleitung und Zielsetzung	127
4.2	Theoretische Grundlagen	131
4.2.1	Lactam-Antibiotika	
4.2.2	Adsorption	134
4.2.3	Hochgradienten Magnetseparation - Stand der Technik	138
4.3	Darstellung der Adsorbersysteme	143
4.3.1	Selektive Adsorbersysteme zur Aufarbeitung von β -Lactam Antibiotika .	143
4.3.2	Selektive Adsorbersysteme zur Aufarbeitung von Cephalosporin C	
4.4	Adsorptionsverhalten	149
4.4.1	Stabilität der Antibiotika und deren Abbauprodukte	149
4.4.2	Adsorption von Imipenem auf kommerziellen Adsorbersystemen	
4.4.3	Adsorption von Imipenem auf der instrAction-Phase	153
4.4.4	Adsorption von Cephalosporin C auf kommerziellen Adsorbern	160
4.4.5	Adsorption von Cephalosporin C auf Polymeren Mesoporōsen Organos	
4.4.6	Wiederverwertbarkeit der Adsorbersysteme	170
4.5	Optimierung des Hochgradienten Magnetseparators	173
4.5.1	Eingesetzte Filterkammern	173
4.5.2	Aufnahme von Durchbruchskurven und Berechnung der Filterkonstante	n176
4.5.3	Simulation der Gittermatrix innerhalb der HGMS-Filterkammer	
4.5.4	Neukonstruktion der HGMS Filterkammer	180
4.6	Integration der Magnetseparation in den Antibiotikumsfermentationspro	zess 187
4.6.1 XII	Aufbau des Prozesses	187

4.6.2	Vorfiltration der Biomasse	191
4.7	Zusammenfassung	195
4.7.1	Adsorbersysteme	195
4.7.2	HGMS-Optimierung	196
4.7.3	Prozessintegration	197
5	Abschließende Diskussion und Fazit	1 9 9
6	Literaturverzeichnis	203
Anhang A	Synthesevorschriften	221
Anhang A 1	Superparamagnetische Eisenoxid-Nanopartikel	221
Anhang A 2	Goldummantelung der Eisenoxidgrundpartikel	222
Anhang A 3	Funktionalisierungsprozess mit EDC und NHS	224
Anhang A 4	Magnetische Goldkatalysatoren auf Silicat-Trägern	225
Anhang A 5	Magnetische Goldkatalysatoren auf Aluminiumoxid-Trägern	227
Anhang A 6	Goldkatalysatoren mit unmagnetischen Al ₂ O ₃ -Trägern	228
Anhang B	Analytische Methoden	231
Anhang B 1	Eliman's Assay	231
Anhang B 2	HPLC-Methoden	233
Anhang B 2	.1 HPLC Analytik von Zuckern	233
Anhang B 2	2.2 HPLC Analytik von Organischen Säuren	234
Anhang B 2	2.3 HPLC Analytik von Antibiotika	235
Anhang B 3	Glucoseoxidase (GOD) Assay	237
Anhang B 4	Fluoreszenzspektroskopie zur Proteinquantifizierung	238
Anhang B 5	IR-Spektroskopie der Gluconsäure aus der Zuckeroxidation	240
Anhang B	B IR-Spektroskopie zur Adsorption von Cephalosporin C	242
Anhang B 7	PCD-Potential-Messung	243
Anhang B 8	Bestimmung der Reaktionsordnung	244
Anhang B 8	3.1 Differentialmethode	244
Anhang B 8	3.2 Integralmethode	246
Anhang B 9	Bestimmung der Verweilzeitverteilung und Raum-Zeit-Ausbeute	248
Anhang C	Reaktionsvorschriften	251
Anhang C	1 Hydrolyse von Cellulose im 2 ml-Eppendorf-Gefäß	251
Anhang C	2 Glucoseoxidation im Rührkessel	252
Anhang C	2.1 Oxidationsreaktion im 50 ml Falcon	252
Anhang C	2.2 Oxidationsreaktion im "Dosimat" bzw. Titrator	252
Anhang C	2.3 Oxidationsreaktion im 500 ml Rührkessel	253
Anhang C	2.4 Oxidationsreaktion im 1 L-Miniforce-Reaktor	254

Anhang C 3	B Adsorptionsisothermen	255
Anhang C 3	3.1 Adsorption von Imipenem	255
Anhang C 3	3.2 Adsorption von Cephalosporin C	255
Anhang C 3	3.3 Elutionen	256
Anhang D	Simulationen	257
Anhang E	Verwendete Adsorber- und Partikelsysteme	261
Anhang F	Verwendete Geräte	263
Anhang G	Verwendete Chemikalien	265
Anhang H	Verwendete Puffer und Lösungen	267
Anhang I	Angaben zur Person	269
Anhang I 1	Betreute Studien-, Diplom- und Masterarbeiten	269
Anhang I 2	Veröffentlichungsliste	269
Anhang I 3		272
	•	