Inhaltsverzeichnis

1.	Pro	bler	mbeschreibung und Handlungsbedarf	1
2.	Sta	nd c	ler Technik	3
	2.1.	Na	vigationssysteme	3
	2.2.	Vor	rausschau-Assistenten	3
	2.3.	Aut	onomes Fahren	5
	2.4.	Op	timale Kollektiv-Strategien	6
	2.5.	Res	sümee	7
3.	Auf	gab	enstellung und Ziele	9
	3.1.	Aus	sgangssituation	9
	3.2.	Zie	lsetzung	9
	3.3.	Auf	gabenstellung und Vorgehensweise	.10
4.	Sys	tem	architektur	.11
	4.1.	Auf	gaben der Fahrzeugführung	.11
	4.2.	Ein	bindung in die Systemstruktur des Fahrzeuges	.13
	4.2.	1.	Konzeption der Schnittstellen	.13
	4.2.	2.	Nutzung vorhandener Sensorik	.15
	4.2.	3.	Car2X-Kommunikation	.18
	4.2.	4.	Kooperation mit weiteren FAS	.20
	4.3.	Pro	zessablauf innerhalb des Vorausschau-Assistenten	.21
	4.3.	1.	Bildung des Lösungsraumes	.22
	4.3.	2.	Optimierungsvariable und -modell	.25
	4.3	.3.	Mehrziel-Optimierung	.27
5.	Aus	swal	hl des Optimierungsverfahrens	.33
	5.1.	Cha	arakterisierung des Optimierungsproblems	.33
	5.2.	Kor	mbinatorische Optimierung	.34
	5.2	.1.	Graphentheorie und typische kombinatorische Optimierungsprobleme	.36
	5.2	.2.	Graphentheoretische Darstellung der Geschwindigkeitsprofil- Optimierung	.37
	5.2	.3.	Lösungsverfahren Dijkstra-, FIFO- und A*-Algorithmus	.41

5.2.4.		2.4.	Lösungsverfahren Bellman-Ford-Algorithmus / dynamische	
			Programmierung	
	5.3.	Ge	schwindigkeitsprofil-Optimierung mit dynamischer Programmierung	
	5.3	3.1.	Diskretisierung des Zustandsraumes	
	5.3	3.2.	Berechnung der Kantengewichte	
		3.3.	Bewertung der Eignung des Verfahrens	
6	. Pr	ogra	mmablauf und Optimierungsmodell	. 55
	6.1.	Init	ialisierung durch Optimierungs- und Fahrzeugparameter	. 57
	6.2.	Zus	standsraumbildung	. 58
	6.	2.1.	Diskreter Maximalgeschwindigkeitsverlauf	. 59
	6.	2.2.	Diskreter Minimalgeschwindigkeitsverlauf	. 61
	6.3.	Ers	ste Rekursion der dynamischen Programmierung	. 65
	6.4.	Мо	dellbasierte Kraftstoffverbrauchs-Berechnung	. 70
	6.	4.1.	Berechnung der Fahrwiderstände	. 71
	6.	4.2.	Bestimmung der Fahrpedalstellung	. 73
	6.	4.3.	Modellierung der Schaltstrategie	. 74
6.4.4.		4.4.	Berechnung der Getriebeeffizienz und des Motorabtriebsmoments	. 77
	6.4.5.		Kraftstoffverbrauch	. 79
	6.	4.6.	Unterlagerte Diskretisierung zur modellbasierten Verbrauchsberechnung	80
	6.	4.7.	Zusammenfassung der Kostenberechnung anhand eines Beispiels .	. 82
	6.	4.8.	Validierung der modellbasierten Kraftstoffverbrauchsberechnung	85
	6.5.	Sp	eicherung der Zwischenergebnisse	88
	6.6.	Bile	dung des optimalen Geschwindigkeitsprofils	92
7	'. S	imula	tion und Ergebnisanalyse	95
	7.1.	Os	zillierende Geschwindigkeit im unbeschränkten Zustandsraum	95
	7.	1.1.	Spezifischer Verbrauch	99
	7.	1.2.	Betriebspunkte im Oszillationsmuster	100
	7.2.	Sir	nulation Stadtfahrt	103
	7.3.	Sir	nulation Überlandfahrt	109
	7.4.	Au	swirkungen oszillierender Geschwindigkeitsprofile	112
	7.5.	Ве	rechnungsdauer	116
	7	5 1	Rechangulared im Ontimierungsverlauf	117

	7.5.	2. Rechenaufwand und Diskretisierungs-Schrittweiten	.120
7	.6.	Einfluss der Diskretisierungs-Schrittweiten auf die Ergebnisqualität	.121
7	.7.	Nachbearbeitung von Geschwindigkeitsprofilen	.126
8.	Dyn	namische Informationen	.129
8	.1.	Verbesserungspotential durch Einbindung dynamischer Informationen	.131
8	.2.	Berücksichtigung von Schaltzeitpunkten zum Erreichen einer Grünphase	.135
8	.3.	Berücksichtigung von Schaltzeitpunkten zur Vermeidung einer Rotphase	.140
8	.4.	Weitere Anwendungsmöglichkeiten dynamischer Informationen	.143
9.	Res	ümee und Ausblick	.145
10.	Lite	raturverzeichnis	.149
A.	Anh	nang	.153
Α	.l.	Abbildungsverzeichnis	.1 5 3
Α	.11.	Tabellenverzeichnis	.157