Contents

-	Acknowledgments	xi
1	Prelude: What Is Algebra?	1
	Why This Book?	3
	Setting and Examining the Historical Parameters	4
•	The Task at Hand	10
2	Egypt and Mesopotamia	12
	Proportions in Egypt	12
_	Geometrical Algebra in Mesopotamia	17
3	The Ancient Greek World	33
	Geometrical Algebra in Euclid's <i>Elements</i> and <i>Data</i>	34
	Geometrical Algebra in Apollonius's <i>Conics</i>	48
	Archimedes and the Solution of a Cubic Equation	53
4	l ater Alexandrian Developments	58
-	Diophantine Preliminaries	60
	A Sampling from the <i>Arithmetica</i> : The First Three	00
	Greek Books	63
	A Sampling from the <i>Arithmetica</i> : The Arabic Books	68
	A Sampling from the <i>Arithmetica</i> : The Remaining	
	Greek Books	73
	The Reception and Transmission of the Arithmetica	77
5	Algebraic Thought in Ancient and Medieval China	Q 1
	Dependence and Linear Equations	01 99
	Polynomial Equations	02
	Indeterminate Analysis	90 08
	The Chinese Remainder Problem	100
	The Chillese Remainder Froblem	100

L		
0	Algebraic Thought in Medieval India	105
	Proportions and Linear Equations	107
	Quadratic Equations	109
	Indeterminate Equations	118
	Linear Congruences and the Pulverizer	119
	The Pell Equation	122
	Sums of Series	126
7	Algebraic Thought in Medieval Islam	132
	Ouadratic Equations	137
	Indeterminate Equations	153
	The Algebra of Polynomials	158
	The Solution of Cubic Equations	165
8	Transmission, Transplantation, and Diffusion	
-	in the Latin West	174
	The Transplantation of Algebraic Thought in the	
	Thirteenth Century	178
	The Diffusion of Algebraic Thought on the Italian	
	Peninsula and Its Environs from the Thirteenth	100
	Through the Fifteenth Centuries	190
	The Diffusion of Algebraic Thought and the	
	Development of Algebraic Notation outside of	004
	Italy	204
9	The Growth of Algebraic Thought	
	in Sixteenth-Century Europe	214
	Solutions of General Cubics and Quartics	215
	Toward Algebra as a General Problem-Solving	
	Technique	227
10	From Analytic Geometry to the Fundamental	
	Theorem of Algebra	247
	Thomas Harriot and the Structure of Equations	248
	Pierre de Fermat and the Introduction to Plane and	
	Solid Loci	253
	Albert Girard and the Fundamental Theorem of	
	Algebra	258

 $\omega = (\chi_1^{(1)})_{1 \geq 0}$

いき いい 通り し

2550

	René Descartes and The Geometry	261
	Johann Hudde and Jan de Witt, Two Commentators	
	on The Geometry	271
	Isaac Newton and the Arithmetica universalis	275
	Colin Maclaurin's Treatise of Algebra	280
	Leonhard Euler and the Fundamental Theorem of	
	Algebra	283
11	Finding the Roots of Algebraic Equations	289
	The Eighteenth-Century Quest to Solve	
	Higher-Order Equations Algebraically	290
	The Theory of Permutations	300
	Determining Solvable Equations	303
	The Work of Galois and Its Reception	310
	The Many Roots of Group Theory	317
	The Abstract Notion of a Group	328
12	Understanding Polynomial Equations	
	in <i>n</i> Unknowns	335
	Solving Systems of Linear Equations in <i>n</i> Unknowns	336
	Linearly Transforming Homogeneous Polynomials	
	in n Unknowns: Three Contexts	345
	The Evolution of a Theory of Matrices and Linear	
	Transformations	356
	The Evolution of a Theory of Invariants	366
3	Understanding the Properties of "Numbers"	381
	New Kinds of "Complex" Numbers	382
	New Arithmetics for New "Complex" Numbers	388
	What Is Algebra?: The British Debate	399
	An "Algebra" of Vectors	408
	A Theory of Algebras, Plural	415
4	The Emergence of Modern Algebra	427
	Realizing New Algebraic Structures Axiomatically	430
	The Structural Approach to Algebra	438
	References	449
	Index	477