Contents

1			d Contemporary Issues of Oxidative Stress, d Life-History Evolution	1
	1.1		eat Oxidation Event: From a Reducing	1
	1.1		Dxidising World	1
	1.2		/e Species, Antioxidants and Oxidative Stress	2
	1.2	1.2.1	On the Nature of Free Radicals and Other	2
		1.2.1		2
		122	Reactive Species	2 5
		1.2.2	Antioxidant Mechanisms	- 3 - 13
		1.2.3	Oxidative Stress	15
		1.2.4	Biochemical Integration and Modularity	16
			of Redox Systems	16
	1.3		sis	20
		1.3.1	Historical Scenario: Birth, Death and Resurgence	•
			of Hormesis	20
		1.3.2	Types of Hormesis	21
		1.3.3	Quantitative Features of Hormesis and Problems	
			with Its Detection	24
		1.3.4	Hormesis and Evolutionary Fitness	26
	1.4	Life-Hi	istory Evolution	27
	Refe	rences .	•••••••••••••••••••••••••••••••••••••••	30
2	Earl	y-Life H	ormesis and Oxidative Experiences Fine-Tune	
	the A	Adult Ph	enotype	39
	2.1	Early H	Environment and Phenotypic Development	- 39
	2.2	Pre-nat	tal Maternal Effects: How Mothers Use Hormones	
		to Shap	pe Their Offspring	41
		2.2.1	Effects of Maternal Androgens:	
			Examples from Birds	42
		2.2.2	Stress Hormones and the Developmental	
			Programming Hypothesis.	44
	2.3	Epigen	etic and Transgenerational Hormetic Effects	49
			6	

xiii

	2.4	Post-natal Hormetic Priming of Organism to Withstand	
		Stress Later in Life	51
		2.4.1 Plants	51
		2.4.2 Invertebrates	51
		2.4.3 Birds	53
		2.4.4 Mammals	54
	2.5	The Compensatory Growth Paradigm	56
	2.6		65
	Refe		65
3	Vari	ation in Oxidative Stress Threats and Hormesis	
	Acro	oss Environments	75
	3.1	The Struggle of Living in Oxidising Environments	75
	3.2		77
		3.2.1 Thermal Relations of Organisms	
			77
			79
			85
	3.3		86
	3.4		87
		3.4.1 Coping with Drastic Changes in Oxygen	
			87
		3.4.2 The Curious Case of Symbiotic Species	90
	3.5	Partial Pressure of Carbon Dioxide	91
	3.6	Coping with Multiple Environmental Stressors.	93
	3.7	Environmentally Induced Variation in Redox State	
			95
			96
			97
			9 8
	3.8		100
	Refe		01
	NI4-	iti and Fachary Francisc Stategies and Faced Selection	11
4	Nutr		111
	4.1 4.2		112
		8.8	112 114
	4.3	8	
	4.4		117 117
			117
	4 5		123
	4.5	Antioxidants and Nutrients as Maternal Programming	127
			127
		4.5.2 Nutrients	128

	4.6	On Nutrients, Toxins, Nutritional Hormesis, Essentiality and the Bertrand's Rule	129
	4.7	Conclusions	132
	Refe	rences	134
5	-	ng with Physical Activity and Inactivity	143
	5.1	Redox Biology of Physical Activity	143
	5.2	Physical Effort, Oxidative Stress and Hormesis	145
	5.3	Costs of Migration and Strategies to Mitigate Them	153
		5.3.1 Long-Distance Migrations	153
		5.3.2 Vertical Migration	156
	5.4	Quarrelsome Families: Competition Among Siblings	157
	5.5	Oxidative Stress Risks Through the Transitions	
		from Dormancy to Arousal and Back	159
	5.6	Conclusions	163
	Refe	rences	164
6	The	Costs of Make-up in Sexual Selection	
U		Social Signalling	171
	6.1	Visual Sexual Signalling in Males	171
	0.1	6.1.1 Carotenoid-Dependent Secondary Sexual Traits	173
		6.1.2 Melanin-Dependent Secondary Sexual Traits	181
		6.1.3 Testosterone and Ornaments	183
		6.1.4 Achromatic Morphological Sexual Signals.	187
	6.2	Visual Sexual Signalling in Females.	189
	0.2	6.2.1 Body Colourations	189
		6.2.2 Egg Pigmentation and the Extended Phenotype	190
	6.3	Beyond Sex: Signalling in Social Contexts	191
	0.5	6.3.1 Signalling in Females	191
		6.3.2 Signalling in Young	192
	6.4	8 8 8	192
	6.5	Warning Signals	194
			195
	Refe	prences	190
7		Role of Oxidative Stress and Hormesis in Shaping	
	Rep	roductive Strategies	205
	7.1	Reproduction is a Time of Trade-Offs	205
	7.2	Mating Systems, Reproductive Tactics and Social Stress	207
		7.2.1 Courtship Displays	207
		7.2.2 The Waiting Male and the Fighting Female	209
		7.2.3 Cooperative Breeding	209
		7.2.4 Hierarchical Societies	210
		7.2.5 Two Sexes, But Many Morphs	212
		7.2.6 Polyandry and Sperm Competition	213

		7.2.7 Socially Monogamous, but Genetically	
		Polygamous	214
	7.3	Male Fertility	215
	7.4	Egg Production	217
	7.5	Colostrum and Milk Production	219
	7.6	Offspring-Rearing Effort	220
	7.7	Hormesis and Reproduction	226
	7.8	Conclusions	229
	Refer	rences	231
8	Com	bating Parasites: Immune Response and Inflammation	241
	8.1	Ecoimmunology and the Arms Race	241
	8.2	Oxidative Stress and Immune Response	243
		8.2.1 Immune Cells as Generators of Reactive Species	243
		8.2.2 Immune Response and Oxidative Stress In Vivo	244
		8.2.3 Inflammation from the Parasite's Viewpoint	251
	8.3	Environmental Stress, Viruses Outbreaks	
		and Oxidative Stress	252
	8.4	Hormesis and Immunology	254
	8.5	Glucocorticoids and Inflammation	258
	8.6	Conclusions	260
	Refer	rences	262
9	With	in- and Among-Species Variation in Resistance	
,		xidative Stress and Hormetic Responses	271
	9.1	The Essence of Biology: Variation	271
	9.1 9.2	Early-Life Experiences	272
	9.2 9.3	Styles of Coping with Stressful Situations	273
	9.5 9.4	Population Differentiation in Oxidative Stress Physiology	278
	9.4 9.5	Oxidative Profiles in Specific Ecological Circumstances	282
	9.5	9.5.1 Predation Risk	282
			282
		9.5.2 Habitat Quality.9.5.3 Daily and Seasonal Variation.	285
	9.6	Environmental, Maternal and Genetic Contributions	205
	9.0	to Oxidative Balance.	288
	0.7	Among-Species Variation in Oxidative Damage	200
	9.7	61	291
	0.0	and Antioxidant Defences	291
	9.8	Among-Species Variation in Hormetic Responses.	293 294
	9.9	Is Hormesis a Target of Natural Selection?	294 294
	9.10 Defe		294 295
	Kelei	rences	293

Integrating Oxidative Stress and Hormesis into Research			
on Se	mescence and Survival Perspectives	30	
10.1	The Secret Nature of Longevity	30	
10.2			
	10.2.1 From the Rate of Living to the Oxidative Stress		
	Hypothesis of Ageing	30	
	10.2.2 The Homeoviscous-Longevity Adaptation		
	and the Membrane-Pacemaker Hypotheses		
	of Ageing	30	
	10.2.3 The Uncoupling to Survive Hypothesis of Ageing	31	
	10.2.4 The Cell Senescence-Telomere		
	Hypothesis of Ageing	31	
	10.2.5 The Redox Stress Hypothesis of Ageing	31	
10.3	Evolutionary Hypotheses of Ageing: Antagonistic Pleiotropy		
	and Disposable Soma	31	
10.4	Antioxidant Mechanisms and Longevity		
	in a Comparative Framework	31	
	10.4.1 Correlative Evidence	31	
	10.4.2 In Vitro Evidence	32	
10.5	Does Oxidative Stress Level Predict Survival		
	in Wild Animals?	32	
10.6	Hormesis Promotes Longevity	32	
10.7	Sex Differences in Lifespan, Ageing and Hormesis	32	
10.8	Univariate and Multivariate Systems in the Study		
	of Ageing	32	
	Conclusions	- 33	
10.9			