Contents

•

~

	Preface	page viii
1.	Introduction	1
1.1	The concept of buffer action	1
1.2	Why are buffers needed?	2
1.3	Some naturally occurring buffers	3
2.	The Theory of Buffer Action	4
2.1	Equilibrium aspects	4
2.2	Activity effects	6
2.3	Effect of dilution	7
2.4	Salt effects	8
2.5	Ampholytes and zwitterions	10
2.6	Buffer capacity	10
2.6.1	Buffer capacity of a polybasic acid	12
2.7	Pseudo buffers	15
2.8	Self buffers	15
2.9	Mixtures of buffers	17
2.10	Temperature dependence	18
2.11	Effect of pressure on buffers	18
2.12	Further reading	19
3.	Applications of pH Buffers	24
3.1	Factors governing the choice of a buffer	24
3.2	Measurement of pH	25
3.3	Biochemistry and biology	27
3.4	Spectroscopy	32
3.5	Buffers for special applications	33
3.5.1	Volatile buffers	33
3.5.2	Buffers for electrophoresis	34
3.5.3	Buffers for complexometric titrations	34
3.5.4	Buffers for chromatography	35

3.5.5	Buffers for polarography	35
3.5.6	Buffers for proton magnetic resonance studies	36
3.5.7	Buffers for solvent extraction	36
3.5.8	Isotonic pharmaceutical buffers	37
3.5.9	Miscellaneous	38
4.	Practical Limitations in the Use of Buffers	55
4.1	Chemical problems	55
4.2	Biological effects	58
4.3	Influence on chemical reactions	60
5.	New pH-Buffer Tables and Systems	62
5.1	On calculating buffer composition tables	62
5.1.1	Buffers of constant ionic strength.	
	No added electrolyte	62
5.1.2	Constant ionic strength buffers with added electrolyte	64
5.1.2	.1 Preparation of amine buffers of constant ionic	
	strength	65
5.1.3	Buffers by direct titration of weak bases or acids with	
	strong acids or bases	65
5.2	On designing a new pH-buffer system	69
6.	Buffers for use in Partially Aqueous and	
	Non-Aqueous Solvents and Heavy Water	77
6.1	pH* Scales	78
6.2	pH* Buffers	78
6.3	The measurement of pH*	79
6.4	A universal pH scale	80
6.5	The pD scale and the measurement of pD	81
6.6	The use of pH* and pD buffers	82
6.6.1	The determination of dissociation constants of acids	82
6.6.2		82
6.7	Surfactants	83
7.	Metal-ion Buffers	94
7.1	The concept of pM	94
7.2	Uses of metal-ion buffers	95
7.3	Calculation of pM	96
7.4	pH-Independent metal-ion buffers	99
7.5	Effects of pH buffer substances on pM	101
7.6 7.7	Anion buffers	102
7.7	Redox buffering	103
8.	Purification of Substances Used in Buffers	109
9.	Preparation of Buffer Solutions	117

10.	Appendices		123
	Appendix I.	Tables for constructing buffer tables	123
	Appendix II.	Composition-pH tables of some commonly	
		used buffers	128
	Appendix III.	Thermodynamic acid dissociation	
		constants of prospective buffer substances	157
	Appendix IV.	The Henderson-Hasselbalch equation	164
Ref	erences	-	167
Ind	ex		173

- ----

.