Contents

Chapter I.	Introdu	ucti	ion	•		•	•		•	•	• •	• •	•	•	•	•	•	•	•	•	1
Literatu	re cited.			•	•	•	•	 •	•	•	• •	••	•	•	•	•	•	•	•	•	12

Chapter II. Theoretical Concepts of the Role	
of Electrical Phenomena in the	
Breakdown of Adhesion and the	
Fracture of Solids	15
\$1. General remarks on the problem of adhesion	15
§2. Principal conclusions from theory of elec-	
trostatic component of adhesion	22
§3. Role of electrostatic forces in adhesion	
phenomena, and the relation between elec-	
trostatic interaction and the chemical	
nature of the contacting bodies	24
§4. Analysis of macroscopic approximation in	
calculating the force of adhesion	26
§5. Critical review of earlier studies	31
Literature cited	38

Chapter III. Experimental Investigation of	
Electroadhesion and Electrocohe-	
sion Phenomena in the Breakdown	
of Adhesive Contact of Solids and	
the Fracture of Crystals	39
§1. Introduction	39

119

§2. 1	Neutralization of electrical double layer	
	charges by gas discharge in the process of	
	detachment	43
	Gas discharge phenomena in the process	
	of detachment	44
	Emission of radio waves in breakdown of	
	adhesion	57
	Residual surface charges after detachment.	59
§3.	Relationships for polymer film detachment in	
000	liquid media	61
§4.	Effect of ionizing radiation on adhesion	63
§5.	Obtaining adhesive contact by the action of an	
001	external electric field	65
§6.	Gas discharge phenomena during fracture of	
U = 1	crystals	66
§7.	Exoelectron emission	74
§8.	Emission of fast electrons in adhesive contact	
	breaking or crystal cleavage	77
	Topography of emitting surface and influence	
	influence of mechanical working on	
	emission	84
	Velocity of emitted electrons and adhesion .	85
	Emission intensity and adhesion	86
§9.	Influence of chemical nature of contacting	
0.0.1	surfaces on intensity of fast-electron emission	92
	Emission of fast electrons in fracture of	
	crystals	99
	Electron emission in deformation and	
	abrasion of polymers	100
§10.	Properties of surfaces freshly formed by	
•	breaking an adhesive bond or by mechanical	
	breakdown of polymers	104
§11.	. Radiation effect of fast electrons	109
Lite	rature cited	114
Chenter	"W Theory of the Electrostatic	
Chapte	r IV. Theory of the Electrostatic Component of Adhesion	119
21	The electrical double layer caused by	110
§1.	donor-acceptor bonding at boundaries	
	uonor acceptor bonung at boundaries	

between amorphous solids, and its role in

adhesion phenomena.....

§2. Investigation of general relationships in	
behavior of electrostatic component in	
contact of a metal and a semiconductor	
with an arbitrary spectrum of surface	
states	129
§3. Role of surface properties in double-layer	
formation and adhesion phenomena	139
Calculation of electrostatic component of	
adhesive force at the contact of a metal	
and a semiconductor with surface states	
of two types	139
Statement and solution of the problem	141
§4. Determination of specific force of adhesion	
(sticking pressure) upon contact of a metal with	
a semiconductor film	146
§5. Study of adhesive force with semiconductor	
interlayer between two metals, and correlation	
of results	151
§6. Role of tunneling in breakdown of double layer	166
Literature cited	175
Chapter V. Electroadhesion Phenomena on	
Semiconductors	1 7 7
§1. Introduction	177
	177
	179
 §3. Surface recombination velocity §4. Surface states of semiconductors 	182
ATA DUDDALE SLAPES OF SETTIONUTIONS	1 1 1 1

§1.	Introduction.	177
§2.	The space-charge layer	179
§ 3.	Surface recombination velocity	182
§ 4.	Surface states of semiconductors	184
§5.	Methods of investigating semiconductor surfaces	
	with formation of an adhesive contact	186
	Dc field-effect method	186
	Photoconductivity decay method and	
	determination of minority carrier	
	lifetime	188
	Combination field-effect method with	
	large sinusoidal signals and steady-	
	state photoconductivity	189
	Monitoring the operation of semiconductor	
	devices	192
	Method for determining contact potential	
	difference	19 3

Method for determining electrophysical	
parameters of polymer/semiconductor	
surface and adhesion in vacuum	194
Specimen preparation	198
Etching germanium specimens	199
Application of polymeric films to semi-	
conductor surfaces	200
§6. Investigation of changes in electrophysical	
properties of germanium surface when an	
adhesive bond is formed	202
§7. Electrical phenomena in breaking adhesive	
bonds between semiconductors and polymers	211
§8. Comparison with theory	219
§9. Methods of protecting germanium surfaces by	
application of varnishes and treatment with	
organosilicon compounds	221
Literature cited	227
Chapter VI. Adhesion of Dielectrics	229
§1. Introduction	229
§2. Interfacial chemical interactions of polymers an	
and functional groups	231
§3. Investigation of contact surface by IR spec-	22.4
troscopy	234
§4. Relation between electroadhesion phenomena	
and the chemical structure of interfacial	0.00
compounds	239
§5. Methods of regulating adhesion properties	246
§6. Chemistry of adhesion interactions	253
Literature cited	254
Chapter VII. Sticking of Polymers	257
§1. Introduction.	257
§2. Factors in strength of adhesive bonding between	
polymers	258
§3. Role of polymer chain diffusion in mechanism of	
sticking and self-sticking of polymers	263
Literature cited	277

Chapter VIII. Sticking and Adhesion of	
Convex Solid Bodies and Powders	279
§1. Introduction	2 79
§2. Thermodynamic theory of adhesion at "convex"	
contact	282
Influence of forces of adhesion on contact	
deformation	288
§3. Sticking and adhesion of particles in liquid media	295
§4. Study of the sticking and adhesion of surfaces in	
liquid media	298
Modeling the interaction of colloidal	
particles	2 9 8
Crossed-fiber method	300
Simulation of colloidal particle interaction	
on the basis of the crossed-fiber method	302
§5. Influence of liquid medium on particle sticking .	310
Adhesion of spherical particles in a liquid	311
Interaction of particles in the presence of	
capillary-condensed liquid	313
Influence of liquid bridge	317
Influence of relative vapor pressure on	
particle adhesion.	320
§6. Sticking and adhesion of particles in a dry	
atmosphere	322
§7. Kinetic adhesion and tack.	343
Literature cited	355
Chapter IX. Influence of Adhesion on	
Friction	359
\$1. Influence of electrical double layer on rolling	222
friction	35 9
Electrical component of rolling friction	359
\$2. Investigation of the velocity dependence of	000
rolling friction as a method of studying	
adhesion	374
§3. Influence of adhesion on external sliding friction	380
Literature cited	386
	300
Construction	
Conclusion	389

Appendix	3 91
A. Methods of adhesiometry.	3 91
Pendulum adhesiometer of Deryagin	391
Bifilar adhesiometer of Deryagin	3 9 3
Three-roll adhesiometer of Deryagin	395
Rotating-plate method of Deryagin and	
Krotova	396
Determination of adhesion of nonwetting	
liquid to solid surface under nonequilib-	
rium conditions	397
Methods of measuring adhesion in liquid	
media	400
Roll adhesiometer	401
Vacuum roll adhesiometers	404
Adhesiometers with present detachment	
velocity	405
Adhesiometer with periodic detachment	408
Determination of adhesion with ultra-	
centrifuge	413
A. The form of a strip during detachment	416
C. The effect of contact deformation on particle	
adhesion	423
Background	423
Determination of the shape of the surface	
of a spherical elastic particle near the	
zone of particle contact with a flat rigid	
surface	424
Macroscopic calculation of sticking force	
with allowance for contact deformation	
of ball	430
Summary	442
D. The effect of discrete structure of charges of the	
double layer on the electrostatic component of	
adhesion	443
Literature cited	455