CONTENTS

Preface	xv
Acknowledgements	xvii
Part 1 Some essential preliminaries	1
Chapter 1 Introduction	3
1.1 Classifications, categorical data, and a methodological transformation	4
1.2 A framework for discussion	7
1.3 Some important tables	8
1.4 Sampling schemes	13
1.4.1 Poisson	14
1.4.2 Multinomial	14
1.4.3 Product-multinomial	14
1.5 Integration and transition	15
1.6 How to use the book and what it assumes	16
Part 2 The basic family of statistical models	19
Chapter 2 Categorical response variable, continuous explanatory variables	21
2A TWO RESPONSE CATEGORIES: THE DICHOTOMOUS CASE	21
2.1 Introduction	21
2.2 A conventional regression model approach	22

24
25
28
29
30
30
35
38
39
40
42
43
43
45
45
46
49
49
52
54
58
62
62
62
63
65
66
67
69
72
72
76

viil

EXAMPLE 2.8	Shopping trip destination choice in Pittsburgh	77
EXAMPLE 2.9	Shopping trip destination choice in West Yorkshire	78
EXAMPLE 2.10	Shopping destination and mode of travel choice in San Francisco	81
EXAMPLE 2.11	Shopping destination and mode of travel choice in Eindhoven	82
Appendix 2.1	Alternative derivations of logistic/logit models	84
Chapter 3 Ca	ategorical response variable, mixed planatory variables	91
3.1 Dummy va	ariables in conventional regression models	91
	al explanatory variables in logistic/logit models	94
3.3 Dummy va	ariables within the general typology of y variables	96
3.4 A range of	illustrative examples	97
EXAMPLE 3.1	Determinants of housing tenure in Sydney	97
EXAMPLE 3.2	Occupational attainment in the United States	99
EXAMPLE 3.3	Housing choice in Pittsburgh	103
EXAMPLE 3.4	Work trip mode choice in Washington D.C. and the spatial transferability of models	106
3.5 Summary		109
ex	ategorical response variable, categorical planatory variables: the linear logit model proach	111
4.1 Linear logi	t models for cell (f): basic forms	112
EXAMPLE 4.1	Preference for army camp location among American soldiers	114
EXAMPLE 4.2	Evaluation of military policemen by negro soldiers from different regions	117
4.2 Weighted l logit model	east squares estimation of cell (f) linear s	121
4.3 Goodness-	of-fit and test statistics	125
4.3.1 Joint te	sts	126
4.3.2 Partial	joint tests	127
4.3.3 Separat	te tests	128
	Automobile accidents and the accident environment in North Carolina	129
4.4 Coding syst	ems for categorical explanatory variables	132

.

,

4.5 Interactions, saturation, hierarchies and parsimony	136
EXAMPLE 4.4 Determinants of homeownership in Boston	
and Baltimore	140
4.6 Model selection	143
EXAMPLE 4.5 Byssinosis amongst U.S. cotton textile workers	147
4.7 A more general matrix formulation	152
Chapter 5 All variables categorical but no division into response and explanatory	155
5.1 The hypothesis of independence and the chi-square test	156
5.2 Towards a log-linear model of independence	157
5.3 A hierarchical set of log-linear models for two-dimensional contingency tables	161
EXAMPLE 5.1 Some simple two-dimensional contingency tables	163
(a) Pebbles in glacial till	164
(b) Lifetime residential mobility and retirement migration	166
(c) Farm acreage under woodland	168
5.4 Log-linear models for multidimensional contingency tables	s 169
EXAMPLE 5.2 Age, decay and use of buildings in north-east Londo	n 175
EXAMPLE 5.3 Industrial location in Hull	176
5.5 Abbreviated notation systems for log-linear models	179
5.6 Estimation of the parameters and the expected cell frequencies	182
5.6.1 The iterative proportional fitting procedure	184
5.6.2 The iterative weighted least squares procedure	188
5.6.3 The Newton-Raphson procedure	190
5.7 Model selection	190
5.7.1 Strategy 1. Stepwise selection	191
5.7.2 Strategy 2. Abbreviated stepwise selection	194
5.7.3 Strategy 3. Screening	196
5.7.4 Strategy 4. Aitkin's simultaneous test procedure	200
EXAMPLE 5.4 Shopping behaviour in Manchester	204
EXAMPLE 5.5 Non-fatal deliberate self-harm in Bristol	207
5.8 The analysis of residuals	211
EXAMPLE 5.6 Opinions about a television series in urban	
and rural areas	213

 6.1 Fixed marginal totals 6.2 Log-linear models for mixed explanatory/response 	215 215 216 217 219
6.2 Log-linear models for mixed explanatory/response	216 217
	217
2	
EXAMPLE 6.1 A hypothetical three-dimensional table 2	219
EXAMPLE 6.2 Shopping behaviour in Manchester (continued) 2	
EXAMPLE 6.3 Relationships between ethnic origin, birthplace, age, and occupation in Canada in 1871 2	21
6.3 Log-linear models as logit models 2	23
6.3.1 The dichotomous response variable case 22	23
6.3.2 The multiple-category response variable case 22	27
6.3.3 Discussion 23	30
Chapter 7 Computer programs for categorical data analysis	33
7.1 A classification of available programs 23	33
7.2 Programs which use function maximization algorithms 23	33
7.3 Programs based upon weighted least squares algorithms 23	36
7.3.1 Iterative weighted least squares 23	36
7.3.2 Non-iterative weighted least squares 23	37
7.4 Programs which use iterative proportional fitting algorithms23	37

Part 3 Extensions of the basic statistical models

Chapter 8 S	pecial topics in logistic/logit modelling	241
8.1 Logistic re	gression diagnostics and resistant fitting	241
8.2 Some logi analysis m	stic/logit model analogues to classical spatial odels	246
8.2.1 Trend	surface models	246
8.2.2 Space	time models	249
EXAMPLE 8.1	Aircraft noise disturbance around Manchester Airport	250
EXAMPLE 8.2	The space-time pattern of housing deterioration in Indianapolis	252

8.3 Logistic/log	git models for ordered categories and	
systems of	equations	254
8.3.1 Ordere	ed response categories	254
8.3.2 System	as of logistic/logit models	255
	nsions of the general matrix formulations inear logit models	259
8.4.1 A mul	tiple response category model	260
8.4.2 A repe	eated-measurement research design example	261
8.4.3 Paired	l comparison experiment examples	264
EXAMPLE 8.3	Residential preferences of schoolchildren in Southend-on-Sea	269
8.5 An alterna linear logit	ative treatment of error structures in cell (f) t models	271
Chapter 9 Sp	ecial topics in log-linear modelling	275
9.1 Combining	g categories and collapsing tables	275
EXAMPLE 9.1	Oak, hickory and maple distributions in Lansing Woods, Michigan	277
9.2 Sampling	zeros	279
9.2.1 Samp	ling zeros and saturated log-linear models	279
9.2.2 Samp	ling zeros and unsaturated log-linear models	281
EXAMPLE 9.2	Non-fatal deliberate self-harm in Bristol (continued)	282
EXAMPLE 9.3	Relationships between tree species and tree height in the forests of South Island, New Zealand	284
9.3 Structural	zeros and incomplete contingency tables	285
EXAMPLE 9.4	Filtering in the housing market of Kingston, Ontario	289
EXAMPLE 9.5	Plant type, soil type and slope aspect	292
9.4 Outliers o	or rogue cells	293
EXAMPLE 9.6	<i>Opinions about a television series in urban and rural areas (continued)</i>	293
9.5 Square ta	bles, symmetry, and marginal homogeneity	295
9.5.1 Symm	netry	295
9.5.2 Marg	inal homogeneity	296
9.5.3 Quas	i-symmetry	297
	netry and marginal homogeneity in dimensional tables	299
9.5.5 Alter	native log-linear models for square tables	300

311

EXAMPLE 9.7 Filtering in the housing market of Kingston, Ontario (continued)	301
9.6 Some remaining issues	303
9.6.1 The multiplicative form of the log-linear model	303
9.6.2 Log-linear models for tables with ordered categories	304
9.6.3 Causal analysis with log-linear models	305
9.6.4 Log-linear models and spatially dependent data	307

Part 4 Discrete choice modelling

Chapter 10 Statistical models for discrete choice analysis	313
10.1 Random utility maximization, discrete choice theory and multinomial logit models	313
EXAMPLE 10.1 The collapse and re-opening of the Tasman Bridge	318
10.2 The IIA property and its implications	324
10.3 The search for less restrictive discrete choice models	326
10.3.1 The multinomial probit model	327
10.3.2 The dogit model	328
10.3.3 The nested logit model	329
10.3.4 Elimination-by-aspects models	332
10.3.5 Weight shifting models	334
EXAMPLE 10.2 Location decisions of clothing retailers in Boston	337
EXAMPLE 10.3 Travel mode choice in Montreal	340
EXAMPLE 10.4 Travel mode choice in the Rotterdam/Hague Metropolitan area.	341
10.4 Assessing and comparing the performance of alternative discrete choice models	343
10.4.1 Tests of the IIA property of the MNL	344
10.4.2 Tests of the MNL against specific alternative discrete choice models	347
10.4.3 A generalized test procedure for comparing the performance of any pair of discrete choice models	349
10.5 A brief guide to some remaining statistical issues	350
10.5.1 Statistical transformations and the search for appropriate functional form	350
10.5.2 Sample design and parameter estimation	351
10.5.3 Panel data and dynamic modelling	353

•

10.5.4 Specification analysis: improper exclusion or inclusion of explanatory variables	355
10.5.5 Wider themes of empirical application	357
•	
Part 5 Towards integration	359
Chapter 11 An alternative framework	361
11.1 The central classification scheme reconsidered	361
11.2 The GLM framework	362
11.2.1 The linear predictor	363
11.2.2 The link function	364
11.2.3 The error distribution	364
11.2.4 Some examples of GLMs	365
11.3 Conclusion	366
References	367
Author index	383
Example index	387