BRIEF CONTENTS

CONTRIBUTORS		xxi
PREFACE		
AC	ACKNOWLEDGMENTS	
TE	CHNICAL ADVISORY BOARD	xxvii
CH	IAPTER ORGANIZATION	xxix
PA	RT I DATA CENTER OVERVIEW AND STRATEGIC PLANNING	1
1	Data Centers—Strategic Planning, Design, Construction, and Operations Hwaiyu Geng	3
2	Energy and Sustainability in Data Centers William J. Kosik	15
3	Hosting or Colocation Data Centers Chris Crosby and Chris Curtis	47
4	Modular Data Centers: Design, Deployment, and Other Considerations Wade Vinson, Matt Slaby, and Ian Levine	59
5	Data Center Site Search and Selection Ken Baudry	89
6	Data Center Financial Analysis, ROI and TCO Liam Newcombe	103
7	Overview of Data Centers in China Zhe Liu, Jingyi Hu, Hongru Song, Yutao Yang, and Haibo Li	139
8	Overview of Data Centers in Korea Minseok Kwon, Mingoo Kim, and Hanwook Bae	153

PAI	RT II DATA CENTER DESIGN AND CONSTRUCTION	161
9	Architecture Design: Data Center Rack Floor Plan and Facility Layout Design Phil Isaak	163
10	Mechanical Design in Data Centers John Weale	183
11	Electrical Design in Data Centers Jay S. Park and Sarah Hanna	217
12	Fire Protection and Life Safety Design in Data Centers Sean S. Donohue	229
13	Structural Design in Data Centers: Natural Disaster Resilience David Bonneville and Robert Pekelnicky	245
14	Data Center Telecommunications Cabling Alexander Jew	257
15	Dependability Engineering for Data Center Infrastructures Malik Megdiche	275
16	Particulate and Gaseous Contamination in Data Centers Taewon Han	307
17	Computational Fluid Dynamics Applications in Data Centers <i>Mark Seymour</i>	313
18	Environmental Control of Data Centers Veerendra Mulay	343
19	Data Center Project Management and Commissioning Lynn Brown	359
PA	RT III DATA CENTER TECHNOLOGY	389
20	Virtualization, Cloud, SDN, and SDDC in Data Centers Omar Cherkaoui and Ramesh Menon	391
21	Green Microprocessor and Server Design Guy AlLee	401
22	Energy Efficiency Requirements in Information Technology Equipment Design <i>Joe Prisco and Jay Dietrich</i>	419

23	Raised Floor versus Overhead Cooling in Data Centers Vali Sorell	429
24	Hot Aisle versus Cold Aisle Containment Dave Moody	441
25	Free Cooling Technologies in Data Centers Nicholas H. Des Champs and Keith Dunnavant	465
26	Rack-Level Cooling and Cold Plate Cooling Henry Coles, Steve Greenberg, and Phil Hughes	479
27	Uninterruptible Power Supply System Chris Loeffler and Ed Spears	495
28	Using Direct Current Network in Data Centers Sofia Bergqvist	523
29	Rack PDU for Green Data Centers Ching-I Hsu	533
30	Renewable and Clean Energy for Data Centers William Kao	559
31	Smart Grid-Responsive Data Centers Girish Ghatikar, Mary Ann Piette, and Venkata Vish Ganti	577
PART IV DATA CENTER OPERATIONS AND MANAGEMENT		
32	Data Center Benchmark Metrics William J. Kosik	595
33	Data Center Infrastructure Management Mark Harris	601
34	Computerized Maintenance Management System in Data Centers <i>Peter Sacco</i>	619
PA	RT V DISASTER RECOVERY AND BUSINESS CONTINUITY	639
35	Data Center Disaster Recovery and High Availability Chris Gabriel	641
36	Lessons Learned from Natural Disasters and Preparedness of Data Centers Hwaiyu Geng and Masatoshi Kajimoto	659
INDEX		

CONTENTS

CONTRIBUTORS	xxi
PREFACE	xxiii
ACKNOWLEDGMENTS	xxv
TECHNICAL ADVISORY BOARD	xxvii
CHAPTER ORGANIZATION	xxix
PART I DATA CENTER OVERVIEW AND STRATEGIC PLANNING	1
1 Data Centers—Strategic Planning, Design, Construction, and Operations	3
 1.1 Introduction, 3 1.2 Data Center Vision and Roadmap, 6 1.3 Strategic Location Plan, 7 1.4 Sustainable Design, 8 1.5 Best Practices and Emerging Technologies, 10 1.6 Operations Management and Disaster Management, 10 1.7 Business Continuity and Disaster Recovery, 12 1.8 Conclusion, 12 References, 13 Further Reading, 14 	
2 Energy and Sustainability in Data Centers William J. Kosik	15
 2.1 Introduction, 15 2.2 Flexible Facilities—Modularity in Data Centers, 18 2.3 Water Use, 21 2.4 Proper Operating Temperature and Humidity, 21 2.5 Avoiding Common Planning Errors, 23 2.6 Cooling System Concepts, 26 2.7 Building Envelope and Energy Use, 28 	

- 2.8 Air Management and Containment Strategies, 302.9 Electrical System Efficiency, 32

xii CONTENTS

- 2.10 Energy Use of IT Equipment, 33
- 2.11 Leveraging IT and Facilities, 37
- 2.12 Determining Data Center Energy Use Effectiveness, 39
- 2.13 Private Industry and Government Energy Efficiency Programs, 42
- 2.14 USGBC-LEED Adaptations for Data Centers, 42
- 2.15 Harmonizing Global Metrics for Data Center Energy Efficiency, 42
- 2.16 Industry Consortium-Recommendations for Measuring and
- Reporting Overall Data Center Efficiency, 42
- 2.17 Strategies for Operations Optimization, 44

References, 44

Further Reading, 44

3 Hosting or Colocation Data Centers

Chris Crosby and Chris Curtis

- 3.1 Introduction, 47
- 3.2 Hosting, 47
- 3.3 Colocation (Wholesale), 48
- 3.4 Types of Data Centers, 48
- 3.5 Scaling Data Centers, 54
- 3.6 Selecting and Evaluating DC Hosting and Wholesale Providers, 54
- 3.7 Build versus Buy, 54
- 3.8 Future Trends, 56
- 3.9 Conclusion, 57
- Further Reading, 57

Sources for Data Center Industry News and Trends, 57

4 Modular Data Centers: Design, Deployment, and Other Considerations

Wade Vinson, Matt Slaby, and Ian Levine

- 4.1 Modular Data Center Definition, 59
- 4.2 MDC Benefits and Applications, 59
- 4.3 Modularity Scalability Planning, 61
- 4.4 MDC Anatomy, 62
- 4.5 Site Preparation, Installation, Commissioning, 80
- 4.6 How to Select an MDC Vendor, 85
- 4.7 External Factors, 86
- 4.8 Future Trend and Conclusion, 86
- Further Reading, 87

5 Data Center Site Search and Selection

Ken Baudry

- 5.1 Introduction, 89
- 5.2 Site Searches Versus Facility Searches, 89
- 5.3 Globalization and the Speed of Light, 90
- 5.4 The Site Selection Process, 93
- 5.5 Industry Trends Affecting Site Selection, 101 Further Reading, 102

6 Data Center Financial Analysis, ROI and TCO

Liam Newcombe

6.1 Introduction to Financial Analysis, Return on Investment, and Total Cost of Ownership, 103 47

59

89

163

183

	6.3	Complications and Common Problems, 116	
	6.4	A Realistic Example, 126	
	6.5	Choosing to Build, Reinvest, Lease, or Rent, 135	
	Furth	her Reading, 137	
7	Over	rview of Data Centers in China	139
	Zhe L	.iu, Jingyi Hu, Hongru Song, Yutao Yang, and Haibo Li	
	7.1	Introduction, 139	
	7.2	Policies, Laws, Regulations, and Standards, 141	
	7.3	Standards, 145	
	7.4	Development Status of China's Data Centers, 147	
	7.5	Energy Efficiency Status, 149	
	7.6	Development Tendency, 150	
	Refe	rences, 151	
8	Over	rview of Data Centers in Korea	153
Ŭ	Minse	eok Kwon, Mingoo Kim, and Hanwook Bae	100
	0 1	Introduction 152	
	8.2	Korean Government Organizations for Data Center 154	
	83	Codes and Standards 154	
	8.4	Data Center Design and Construction 155	
	8.5	Data Center Market, 159	
	8.6	Conclusion, 160	
	Refe	rences. 160	
	1.0.0		
		DATA OPPETED DEGLOVAND CONCEPTOR	
PAI	KL H	DATA CENTER DESIGN AND CONSTRUCTION	161

9	Architecture Design: Data Center Rack Floor Plan and Facility Layout Design Phil Isaak		
	9.1	Introduction, 163	
	9.2	Overview of Rack and Cabinet Design, 163	
	0.2	Second D. D. S. Cliteria 166	

6.2 Financial Measures of Cost and Return, 109

- 9.3 Space and Power Design Criteria, 166
- 9.4 Pathways, 169
- 9.5 Coordination with Other Systems, 170
- 9.6 Computer Room Design, 174
- 9.7 Modular Design, 177
- 9.8 CFD Modeling, 178
- 9.9 Data Center Space Planning, 179
- 9.10 Conclusion, 181
- Further Reading, 181

10 Mechanical Design in Data Centers

```
John Weale
```

- 10.1 Introduction, 183
- 10.2 Key Design Criteria, 183
- 10.3 Mechanical Design Process, 186
- 10.4 Data Center Considerations in Selecting Key Components, 203

10.5 Primary Design Options, 20610.6 Current Best Practices, 21110.7 Future Trends, 214Reference, 215Further Reading, 215

11 Electrical Design in Data Centers

217

Jay S. Park and Sarah Hanna 11.1 Uptime, 217 11.2 Electrical Equipment to Deploy, 217 11.3 Electrical Design, 217 11.4 Availability, 222 11.5 Determining Success, 227 Appendix 11.A, 228 Further Reading, 228

12 Fire Protection and Life Safety Design in Data Centers

Sean S. Donohue

229

- 12.1 Fire Protection Fundamentals, 229
 12.2 AHJs, Codes, and Standards, 230
 12.3 Local Authorities, National Codes, and Standards, 230
 12.4 Life Safety, 231
 12.5 Passive Fire Protection, 233
- 12.6 Active Fire Protection/Suppression, 234
- 12.7 Detection, Alarm, and Signaling, 239
- 12.8 Fire Protection Design, 242
- References, 243

13 Structural Design in Data Centers: Natural Disaster Resilience

David Bonneville and Robert Pekelnicky

13.1 Introduction, 245

- 13.2 Building Design Considerations, 246
- 13.3 Earthquakes, 248
- 13.4 Hurricanes, Tornadoes, and Other Windstorms, 251
- 13.5 Snow and Rain, 252
- 13.6 Flood and Tsunami, 253
- 13.7 Comprehensive Resiliency Strategies, 254
- References, 255

14 Data Center Telecommunications Cabling

Alexander Jew

257

- 14.1 Why Use Data Center Telecommunications Cabling Standards?, 257
- 14.2 Telecommunications Cabling Standards Organizations, 259
- 14.3 Data Center Telecommunications Cabling Infrastructure
- Standards, 259
- 14.4 Telecommunications Spaces and Requirements, 262
- 14.5 Structured Cabling Topology, 264
- 14.6 Cable Types and Maximum Cable Lengths, 267
- 14.7 Cabinet and Rack Placement (Hot Aisles and Cold Aisles), 269
- 14.8 Cabling and Energy Efficiency, 270

	 14.9 Cable Pathways, 271 14.10 Cabinets and Racks, 272 14.11 Patch Panels and Cable Management, 272 14.12 Reliability Levels and Cabling, 272 14.13 Conclusion and Trends, 273 Further Reading, 273 	
15	Dependability Engineering for Data Center Infrastructures Malik Megdiche	275
	 15.1 Introduction, 275 15.2 Dependability Theory, 276 15.3 System Dysfunctional Analysis, 283 15.4 Application to Data Center Dependability, 297 Reference, 305 Further Reading, 305 	
16	Particulate and Gaseous Contamination in Data Centers	307
	 <i>Taewon Han</i> 16.1 Introduction, 307 16.2 Standards and Guidelines, 307 16.3 Airborne Contamination, 309 16.4 A Conventional Solution, 309 16.5 Conclusions and Future Trends, 311 Acknowledgment, 311 References, 312 Further Reading, 312 	
17	Computational Fluid Dynamics Applications in Data Centers	313
	 Mark Seymour 17.1 Introduction, 313 17.2 Fundamentals of CFD, 313 17.3 Applications of CFD for Data Centers, 321 17.4 Modeling the Data Center, 325 17.5 Potential Additional Benefits of a CFD/Virtual Facility Model, 340 17.6 The Future of Virtual Facility Models, 341 References, 341 	
18	Environmental Control of Data Centers	343
	Veerendra Mulay	
	 18.1 Data Center Fower Hends, 343 18.2 Thermal Management of Data Centers, 343 18.3 Cooling System Design and Control, 346 18.4 Performance Metrics, 352 References, 353 	
19	Data Center Project Management and Commissioning	359
	Lynn Brown	
	19.1 Introduction, 35919.2 Project Management, 35919.3 Commissioning, 367	

xvi CONTENTS

	19.4 19.5 19.6 19.7 19.8 19.9 19.10 Furthe	Bidding Phase Tasks, 376 Acceptance Phase Tasks, 378 LEED-Required Commissioning Tasks, 381 Minimum Commissioning Tasks, 382 Commissioning Team Members, 383 Data Center Trends, 386 Conclusion, 387 er Reading, 387	
PAF	RT III	DATA CENTER TECHNOLOGY	389
20	Virtu Omar	alization, Cloud, SDN, and SDDC in Data Centers Cherkaoui and Ramesh Menon	391
	20.1 20.2 20.3 20.4 20.5 20.6 20.7 Refer Furth	Introduction, 391 Virtualization in Data Centers, 392 Cloud as an Extension of the Data Center, 393 Networking in Data Center, 394 SDN, 396 SDDC, 398 Roadmap to Cloud-Enabled Data Center, 398 ences, 400 er Reading, 400	
21	Gree Guy A	n Microprocessor and Server Design	401
	21.1 21.2 21.3 21.4 21.5 21.6 21.7 Furth	Introduction, 401 Microprocessor, 403 Server, 407 Motherboard, 409 Software, 413 Benchmarks, 415 Conclusions, 416 er Reading, 417	
22	Ener Equi	gy Efficiency Requirements in Information Technology pment Design	419
	Joe P 22.1 22.2 22.3 22.4 22.5 22.6 Refer Furth	Introduction, 419 Computer Servers, 421 Storage Systems, 425 Uninterruptable Power Systems, 426 Networking Equipment, 427 Future Trends in Product Energy Efficiency Requirements, 427 rences, 428	
23	Rais	ed Floor versus Overhead Cooling in Data Centers	429
	23.1	Introduction, 429	

23.2 History of Raised Floor versus Overhead Air Distribution, 42923.3 Air Delivery Methodology as it Relates to Containment, 430

- 23.4 Airflow Dynamics, 430
- 23.5 Under-floor Air Distribution, 433
- 23.6 Overhead Air Distribution, 437
- 23.7 Conclusion, 439

References, 439

Further Reading, 439

24 Hot Aisle versus Cold Aisle Containment

- Dave Moody
- 24.1 Executive Summary, 441
- 24.2 Containment: The Airflow Architecture Models, 441
- 24.3 Return Air Temperature Trends in HAC and CAC, 444
- 24.4 Run- or Ride-Through Impact of Higher RAT, 44624.5 Single-Geometry Passive Chimney Ducts as Part
- of HAC, 448
- 24.6 Psychological Impacts of Higher RAT, 450
- 24.7 Cooling System Airflow and Fan Power, 453
- 24.8 Redundancy and Cooling Unit Location Impact, 459
- 24.9 Impact on Conditions for Peripheral Equipment in the Data Center Outside any of the HAC or CAC Zone(s), 461
- 24.10 Impact on Economizer Operation Time Periods During Cooler Outside Ambient Temperatures, 462
- 24.11 Conclusion and Future Trends, 463

References, 464

Further Reading, 464

25 Free Cooling Technologies in Data Centers

Nicholas H. Des Champs and Keith Dunnavant

- 25.1 Introduction, 465
- 25.2 Using Properties of Ambient Air to Cool a Data Center, 466
- 25.3 Economizer Thermodynamic Process and Schematic of Equipment Layout, 466
- 25.4 Comparative Potential Energy Savings and Required Trim Mechanical Refrigeration, 475
- 25.5 Conventional Means for Cooling Datacom Facilities, 478

References, 478 Further Reading, 478

26 Rack-Level Cooling and Cold Plate Cooling

Henry Coles, Steve Greenberg, and Phil Hughes

- 26.1 Introduction, 479
- 26.2 Rack-Level Cooling Types, 482
- 26.3 Rack-Level Cooler Selection and Installation, 485
- 26.4 Conclusion and Future Trends, 486
- 26.5 Rack-Level Cooling Using Cold Plates, 486
- 26.6 Conclusions and Future Trends, 492

References, 493

Further Reading, 493

441

465

27 Uninterruptible Power Supply System

Chris Loeffler and Ed Spears

27.1 Introduction, 49527.2 Principle of UPS and Application, 496

27.3 Considerations in Selecting UPS, 504

27.4 Reliability and Redundancy, 507

27.5 Alternate Energy Sources: AC and DC, 512

27.6 UPS Preventive Maintenance Requirements, 516

27.7 UPS Management and Control, 519

27.8 Conclusion and Trends, 520

Reference, 520 Further Reading, 520

28 Using Direct Current Network in Data Centers

523

Sofia Bergqvist

28.1 Introduction, 523
28.2 Edison's Revenge, 523
28.3 Data Center Power Design, 525
28.4 Why Use the DC System in Data Centers, 526
28.5 Examples of DC Data Centers in Operation, 531
28.6 Future Trends and Conclusions, 532
Acknowledgments, 532
References, 532
Further Reading, 532

29 Rack PDU for Green Data Centers

Ching-I Hsu

29.1 Introduction, 533
29.2 Fundamentals and Principles, 534
29.3 Elements of the System, 540
29.4 Considerations for Planning and Selecting Rack PDUs, 548
29.5 Future Trends for Rack PDUs, 555
Further Reading, 557

30 Renewable and Clean Energy for Data Centers

William Kao

30.1 Introduction, 559
30.2 Renewable Energy Basics, 560
30.3 Renewable Energy Types, 560
30.4 Alternative Energy: Fuel Cell, 569
30.5 Case studies, 573
30.6 Summary and Future Trends, 575
References, 576
Further Reading, 576

31 Smart Grid-Responsive Data Centers

Girish Ghatikar, Mary Ann Piette, and Venkata Vish Ganti

31.1 Introduction and Context for Grid-Responsive Data Centers, 577

31.2 Smart Grid and DR Applications in the United States, 579

31.3 Site Infrastructure Control System Technologies, 581

577

533

	31.4	IT Infrastructure Virtualization Technologies, 582	
	31.5	DR Opportunities, Challenges,	
		and Automation Considerations, 582	
	31.6	Data Centers with DR Provisions, 583	
	31.7	AutoDR Using Open Standards, 585	
	31.8	Grid-Distributed Data Centers and Networks, 586	
	31.9	Summary of DR Strategies, 586	
	31.10	LLS Paliaiae Coverning Smart	
	31.11	Crid Emerging Technologies 588	
	31.12	The Energy Independence	
	51.12	and Security Act of 2007, 588	
	31.13	State Policies for Smart	
		Grid Advancement, 589	
	31.14	Conclusions and Next Steps, 589	
	Ackno	owledgments, 590	
	Refer	ences, 591	
	Furthe	er Reading, 592	
		DATA OFFITED ODED ATIONS AND MANACEMENT	503
PAJ	KT IV	DATA CENTER OPERATIONS AND MANAGEMENT	393
32	Data	Center Benchmark Metrics	595
	William J. Kosik		
	32.1	Introduction, 595	
	32.2	Origin and Application of PUE as a Metric, 595	
	32.3	Metrics Used in Data Center Assessments, 597	
	32.4	Green Grid's xUE Metrics, 597	
	32.5	Rack Cooling Index and Return Temperature Index, 598	
	32.6	Additional Industry Metrics, 598	
	32.7	European Commission Code of Conduct, 598	
	32.8	International Telecommunication Union, 599	
	32.9	Conclusion, 599	
	Furth	er Reading, 599	
33	Data	Center Infrastructure Management	601
	Mark	Harris	
	33.1	What is Data Center Infrastructure Management?, 601	
	33.2	Triggers for DCIM Acquisition and Deployment, 604	
	33.3	What are the Modules of a DCIM Solution?, 606	
	33.4	The DCIM System Itself. What to Expect and Plan for, 611	
	33.5	Critical Success Factors when Implementing a DCIM System, 614	
	33.6	Future Trends in DCIM, 616	
	33.7	Conclusion, 617	
	Refer	rence, 617	
	Furth	er Reading, 617	
34	Com	puterized Maintenance Management System in Data Centers	619
	Peter	Sacco	
	34.1	Introduction, 619	

34.3 CMMS Modules, 620

34.4 Considerations in Selecting CMMS, 63234.5 Conclusion, 63734.6 Trends, 637Further Reading, 638

PAI	RT V DISASTER RECOVERY AND BUSINESS CONTINUITY	639	
35	Data Center Disaster Recovery and High Availability Chris Gabriel	641	
	 35.1 Introduction, 641 35.2 The Evolution of the Data Center and Data Center Risk, 642 35.3 Physical Data Center Design and Redundancy: Tiers and N+ What?, 649 35.4 Virtualization Brings Out-of-the-Box DR Survivability, 652 35.5 DR and Cloud, 656 References, 657 Further Reading, 657 		
36	Lessons Learned from Natural Disasters and Preparedness of Data Centers	659	
	 36.1 Introduction, 659 36.2 Design for Business Continuity and Disaster Recovery, 659 36.3 Natural Disasters, 660 36.4 The 2011 Great East Japan Earthquake, 660 36.5 The 2012 Eastern U.S. Coast Superstorm Sandy, 663 36.6 Conclusions, 666 References, 666 Further Reading, 666 		
INI	INDEX 66		