brief contents

PART 1 FOUNDATIONS 00.‘..“0.""..".-!---.1

1 = Clojure philosophy 3
2 ® Drinking from the Clojure fire hose 25
3 ® Dipping your toes in the pool 51

PART 2 DATA TYPES teeeereeeesreerssaentetennransaternsetreseraresernsrns 67
4 m QOnscalars 69
5 = Collection types 84

PART 3 FUNCTIONAL PROGRAMMING iciutinssrsassssasnssrrarasansasens 115
6 ® Being lazy and setin your ways 117
7 ® Functional programming 136

P.{ART 4 LJL[{GE-SCALE DESIGN lb‘.tt.iil’.lIilll....'.llll 171

8 ®m Macros 173
9 = Combining data and code 194

10 = Mutation and concurrency 224
11 = Parallelism 262

viii BRIEF CONTENTS

PART 5 HOST SYMBIOS]S l.'..l..0..}..-Jllllllt"ii’!!t.'I!."...QO..D¢.000‘I.II275

12 = Javanext 277
13 » Why ClojureScript? 310

PART 6 TANGENTIAL CONSIDERATIONS uuvrerersrersanssseeccsecescssses 331

14
15
16
17

Data-oriented programming 333
Performance 363

Thinking programs 393

Clojure changes the way you think 423

contents

Joreword to the second edition xix
Soreword to the furst edition xxi
preface xxiii

acknowledgments xxv

about this book xxvii

about clojure xxxuii

about the cover illustration xxxix

PAT 1 FOUNDATIONS .eutteeeeeeeeeeaseesaccsnsessssssasssssssssssnssasses |

Clojure philosophy 3

1.1

1.2

1.3

1.4

1.5

The Clojure way 4

Simplicity 4 = Freedom to focus 5 = Empowerment 5
Clarity 6 » Consistency 7

Why a(nother) Lisp? 8
Beauty 9 « But what'’s with all the parentheses? 9
Functional programming 16

A workable definition of functional programming 16
The implications of functional programming 17

Why Clojure isn’t especially object-oriented 17

Defining terms 17 » Imperative “baked in” 18 = Most of what
OOP gives you, Clojure provides 19

Summary 24

CONTENTS

Drinking from the Clojure fire hose 25
2.1 Scalars: the base data types 26

Numbers 26 = Integers 27 » Floating-point numbers 27
Rationals 28 = Symbols 28 = Keywords 28 = Strings 29
Characters 29

2.2 Putting things together: collections 29

Lists 29w Vectors 30 = Maps 30 = Sets 30
2.3 Making things happen: ealling functions 31
2.4 Vars are not variables 31
2.5 Functions 32

Anonymous functions 32 = Creating named functions with def
and defn 33 = Functions with multiple arities 33 = In-place
Sfunctions with #() 34

2.6 Locals, loops, and blocks 35
Blocks 35 = Locals 35 = Loops 36
2.7 Preventing things from happening: quoting 39

Evaluation 39 = Quoting 40 = Unquote 41 = Unquote-
splicing 42 » Auto-gensym 42

2.8 Using host libraries via interop 43

Accessing static class members (Clojure only) 43 » Creating
instances 43 = Accessing instance members with the .

operator 44 = Setting instance fields 44 = The .. macro 44
The doto macro 45 = Defining classes 45

2.9 Exceptional circumstances 46
Throwing and catching 46
2.10 Modularizing code with namespaces 47

Creating namespaces using ns 47 = Loading other namespaces
with :require 48 = Loading and creating mappings with

:refer 48 = Creating mappings with :refer 49 Loading Java
classes with :import 49

2.11 Summary 50

3 Dipping your toes in the pool 51
3.1 Truthiness 52

What's truth? 52 = Don't create Boolean objects 52
nil vs. false 53

3.2 Nil pun with care 53

CONTENTS xi

3.3 Destructuring 55

Your assignment, should you choose to accept it 55
Destructuring with a vector 56 = Destructuring with a map 57
Destructuring in function parameters 59 = Destructuring vs.
accessor methods 59

3.4 Using the REPL to experiment 59
Experimenting with seqs 59 » Experimenting with graphics 61
Putting it all together 63 » When things go wrong 63 = Just for
fun 65

3.5 Summary 66

PART 2 DATA TYPES tvtrerterererecscnresesessssessssssssssssessssssesenses 07

On scalars 69

4.1 Understanding precision 70
Truncation 70 = Promotion 71 » Overflow 71
Underflow 72 » Rounding errors 72
4.2 Trying to be rational 73
Why be rational? 73 = How to be rational 74 = Caveals of
rationality 75
4.3 When to use keywords 75
Applications of keywords 76 = Qualifying your keywords 77
4.4 Symbolic resolution 78
Metadata 79 = Symbols and namespaces 80 » Lisp-1 80

4.5 Regular expressions—the second problem 81

Syntax 82 = Regular-expression functions 83 = Beware of
mutable matchers 83

46 Summary 83

Collection types 84

5.1 Persistence, sequences, and complexity 85

“You keep using that word. I do not think it means what you
think it means.” 85 = Sequence terms and what they mean 86
Big-O 89

5.2 Vectors: creating and using them in all their varieties 91

Building vectors 91 = Large vectors 92 = Vectors as stacks 95
Using vectors instead of reverse 96 » Subvectors 97 w» Veclors as
map entries 97 » What vectors aren’t 98

xii CONTENTS

5.3 Lists: Clojure’s code-form data structure 99

Lists like Lisps like 99 = Lists as stacks 1 00 = What lists
aren’t 100

5.4 How to use persistent queues 101
A queue about nothing 101 = Putting things on 102
Getting things 102 = Taking things off 102

5.5 Persistentsets 103

Basic properties of Clojure sets 103 = Keeping your sets in order
with sorted-set 104 = The contains? function 105 = The
clojure.set namespace 105

5.6 Thinking in maps 107

Hash maps 107 = Keeping your keys in order with sorted
maps 108 = Keeping your insertions in order with array
maps 109

5.7 Putting it all together: finding the position of items in a
sequence 110

Implementation 111
5.8 Summary 113

PART 3 FUNCTIONAL PROGRAMMING .cvereeencncnnsoncransecsnss 115

6 Being lazy and set in your ways 117
6.1 On immutability: being set in your ways 117
What is immutability? 118 » What is immutability for? 119
6.2 Structural sharing: a persistent toy 120
6.3 Laziness 123

Familiar laziness with logical-and 124 = Understanding the lazy-
seq recipe 125 = Losing your head 128 = Employing infinite
sequences 129 = The delay and force macros 130

6.4 Putting it all together: a lazy quicksort 132
The implementation 133

6.5 Summary 135

Functional programming 136
7.1 Functions in all their forms 136

First-class functions 137 = Higher-order functions 140 = Pure
functions 144 = Named arguments 145 » Constraining
functions with pre- and postconditions 146

CONTENTS xiii

7.2 On closures 148

Functions returning closures 149 » Closing over parameters 150
Passing closures as functions 150 = Sharing closure context 151

7.3 Thinking recursively 155

Mundane recursion 155 w Tail calls and recur 158 = Don’t
forget your trampoline 161 = Continuation-passing style 163

7.4 Putting it all together: A* pathfinding 165

The world 165 = Neighbors 165 = The A*
implementation 167 = Notes about the A* implementation 169

7.5 Summary 170

PART 4 LARGE-SCALE DESIGN ..veteeecesescocscessssasecsssessceseses 171

Macros 173

8.1 Dataiscodeisdata 175

Syntax-quote, unquote, and splicing 176 = Macro rules of
thumb 177

8.2 Defining control structures 178

Defining control structures without syntax-quote 178 = Defining
control structures using syntax-quote and unquoting 179

8.3 Macros combining forms 180

8.4 Using macros to change forms 182

8.5 Using macros to control symbolic resolution time 186
Anaphora 186 = (Arguably) useful selective name
capturing 188

8.6 Using macros to manage resources 188

8.7 Putting it all together: macros returning functions 190

8.8 Summary 193

Combining data and code 194

9.1 Namespaces 195
Creating namespaces 196 = Expose only what’s needed 197
Declarative inclusions and exclusions 199

9.2 Exploring Clojure multimethods with the Universal
Design Pattern 200

The parts 201 » Basic use of the Universal Design Pattern 202
Multimethods to the rescue 203 = Ad hoc hierarchies for inherited

CONTENTS

behaviors 203 = Resolving conflict in hierarchies 204
Arbitrary dispatch for true maximum power 205

9.3 Types, protocols, and records 206
Records 206 = Protocols 209 = Building from a more primitive
base with deftype 217

9.4 Putting it all together: a fluent builder for chess
moves 219
Java implementation 219 = Clojure implementation. 221

9.5 Summary 223

1 Mutation and concurrency 224
10.1 When to use refs 226

Using refs for a mutable game board 228 = Transactions 230
Embedded transactions 232 = The things that STM makes
easy 232 = Potential downsides 233 w The things that make
STM unhappy 234

10.2 Refactoring with refs 235

Fixing the game board example 235 = Commutative change with
commute 237 » Vulgar change with ref-set 238 = Refs under
stress 239

10.3 When to use agents 240

In-process vs. distributed concurrency models 241 = Controlling
I/0 with an agent 243 = The difference between send and
send-off 245 = Error handling 246 = When not to use
agents 248

10.4 When to use atoms 249

Sharing across threads 249 = Using atoms in transactions 250

10.5 When to use locks 252

Safe mutation through locking 253 = Using Java's explicit
locks 254

10.6 Vars and dynamic binding 256

The binding macro 257 » Creating a named var 257
Creating anonymous vars 258 = Dynamic scope 259

10.7 Summary 260

1 Parallelism 262

11.1 When to use futures 263
Futures as callbacks 263

11.2

11.3

11.4
11.5

CONTENTS XV

When to use promises 268
Parallel tasks with promises 269 = Callback API to blocking
API 270 » Deterministic deadlocks 271

Parallel operations 271

The pvalues macro 272 = The pmap function 272 = The pealls
function 273

A brief introduction to reducer/fold 273
Summary 274

PART 5 HOST SYMBIOSIS tuvveeeeeesceerssccsscanssscessesssassssessces 240
] Java.next 277

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Generating objects on the fly with proxy 278
A simple dynamic web service 279

Clojure gen-class and GUI programming 285
Namespaces as class specifications 286 = The guts of namespace
compilation 288 = Exploring user interface design and
development with Clojure 289

Clojure’s relationship to Java arrays 292
Types of arrays: primitive and reference 292 = Array
mutability 294 = Arrays’ unfortunate naming convention 295
Multidimensional arrays 296 = Variadic method/constructor
calls 297

All Clojure functions implement ... 297
The java.util. Comparator interface 297 » The java.lang. Runnable
interface 298 = The java.util.concurrent.Callable interface 299

Using Clojure data structures in Java APIs 299

The java.util. List interface 300 = The java.lang. Comparable
interface 300 = The java.util. RandomAccess interface 301
The java.util. Collection interface 301 = The java.util.Set
interface 302

The definterface macro 302

Generating interfaces on the fly 302

Be wary of exceptions 304

A bit of background regarding exceptions 305 = Runtime vs.
compile-time exceptions 305 = Handling exceptions 307
Custom exceptions 308

Summary 309

xvi CONTENTS

1 Why ClojureScript? 310
13.1 Implementation vs. interface 311
13.2 Compiler internals: analysis vs. emission 314

Stages of compilation 315 = Web Audio 317 = Advanced
compilation 321 = Generating an externs.js file 324

13.3 Compile vs. run 326
13.4 Summary 330

PART 6 TANGENTIAL CONSIDERATIONS uvevreecseccsseesesenss 391

1 Data-oriented programming 333
14.1 Code as code, and data as data 334

A strict line betwixt 334 = ORMG 335 = Common ways to
derive information from data 337 = PLOP 337

14.2 Dataasdata 338
The benefits of value 338 = Tagged literals 343

14.3 Data as code 347

The data-programmable engine 347 » Examples of data-
programmable engines 347 = Case study: simple event
sourcing 348

14.4 Code as data as code 357

Hanrt’s discovery and homoiconicity 358 = Clojure code is
data 358 » Putting parentheses around the specification 358

14.5 Summary 362

] Performance 363

15.1 Type hints 364

Advantages of type adornment 364 » Type-hinting arguments
and returns 364 = Type-hinting objects 366

15.2 Transients 366

Ephemeral garbage 366 = Transients compare in efficiency to
mutable collections 367

15.3 Chunked sequences 368
Regaining one-at-a-time laziness 370

1

1

CONTENTS

15.4 Memoization 370

Reexamining memoization 371 = A memoization protocol 371
Abstraction-oriented programming 373

15.5 Understanding coercion 374

Using primitive longs 375 = Using primitive doubles 376
Using auto-promotion 377

15.6 Reducibles 378

An example reducible collection 379 = Deriving your first
reducing function transformer 380 = More reducing function
transformers 383 » Reducible transformers 385 = Performance
of reducibles 386 » Drawbacks of reducibles 387

Integrating reducibles with Clojure reduce 387 » The fold
Sfunction: reducing in parallel 389

15.7 Summary 392

Thinking programs 393
16.1 A problem of search 394
A brute-force Sudoku solver 394 = Declarative is the goal 399
16.2 Thinking data via unification 400

Potential equality, or satisfiability 400 = Substitution 404
Unification 405

16.3 An introduction to core.logic 407

It’s all about unification 407 = Relations 408
Subgoals 411

16.4 Constraints 414

An introduction to constraint programming 414 = Limiting
binding via finite domains 416 = Solving Sudoku with finite
domains 418

16.5 Summary 421

Clojure changes the way you think 423
17.1 Thinking in the domain 424

A ubiquitous DSL. 424 = Implementing a SQL-like DSL to

generate queries 426 = A note about Clojure’s approach to
DSLs 432

CONTENTS

17.2 Testing 432

Some useful unit-testing techniques 433 = Contracts
programming 435

17.3 Invisible design patterns 437
Clojure’s first-class design paiterns 437
17.4 Error handling and debugging 447
Error handling 447 = Debugging 450
17.5 Fare thee well 454

resources 455
index 461

	Inhaltsverzeichnis
	[Seite 1]
	[Seite 2]
	[Seite 3]
	[Seite 4]
	[Seite 5]
	[Seite 6]
	[Seite 7]
	[Seite 8]
	[Seite 9]
	[Seite 10]
	[Seite 11]
	[Seite 12]

