Inhaltsverzeichnis

1	Doppler-begrenzte Absorptions- und Fluoreszenz-Spektroskopie						
	mit	mit Lasern 1.1 Vorteile des Lasers für die Spektroskopie					
	1.1	· · · · · · · · · · · · · · · · · ·					
	1.2	ndliche Verfahren der Absorptionsspektroskopie	7				
		1.2.1	Frequenzmodulation des Lasers	7			
		1.2.2	Absorptionsspektroskopie durch Messung der Abklingzeit				
			eines optischen Resonators	12			
		1.2.3	Absorptionsspektroskopie innerhalb des Laserresonators	16			
	1.3	Direkt	te Messung der absorbierten Photonen	22			
		1.3.1	Anregungsspektroskopie	22			
		1.3.2	Photoakustische Spektroskopie	27			
		1.3.3	Ionisationsspektroskopie	30			
		1.3.4	Optogalvanische Spektroskopie	37			
		1.3.5	Optothermische Spektroskopie	40			
	1.4	Magn	etische Resonanz- und Stark-Spektroskopie mit Lasern	44			
	1.5	Geschwindigkeitsmodulations-Spektroskopie 47					
	1.6	Laserinduzierte Fluoreszenz					
	1.7	LIBS .		56			
	1.8	Vergle	eich zwischen den verschiedenen Verfahren	57			
2	Nichtlineare Spektroskopie						
	2.1						
	2.2	Sättigung inhomogen verbreiterter Absorptionsübergänge					
	2.3	Sättigungs-Spektroskopie					
	2.4			80			
		2.4.1	Anschauliche Darstellung	81			
		2.4.2	Die Frequenzabhängigkeit des Polarisationssignals	82			
		2.4.3	Größe der Polarisationssignale	86			
		2.4.4	Empfindlichkeit der Polarisations-Spektroskopie	90			
		2.4.5	Vorteile der Polarisations-Spektroskopie	91			
	2.5						
		2.5.1	Grundlagen der Zweiphotonen-Absorption	92			
		2.5.2	Doppler-freie Zweiphotonen-Spektroskopie	95			
		2.5.3	Abhängigkeit des Zweiphotonen-Signals				
			von der Fokussierung	100			

X	Inhaltsverzeichnis	
		•

			Mehrphotonen-Spektroskopie	101		
	2.6		ndungsbeispiele und spezielle Techniken			
		der nic	htlinearen Spektroskopie	103		
3	Lase	aser-Raman-Spektroskopie 1				
	3.1	Grund	lagen	111		
	3.2	Neuere Techniken der linearen Raman-Spektroskopie				
	3.3	Nichtli	ineare Raman-Spektroskopie	122		
		3.3.1	Induzierte Raman-Streuung	123		
		3.3.2	Kohärente Anti-Stokes Raman-Spektroskopie	127		
		3.3.3	Resonante CARS und Box-CARS	131		
		3.3.4	Hyper-Raman-Effekt	133		
	3.4	Spezie	lle Techniken der Raman-Spektroskopie	135		
		3.4.1	Resonante Raman-Spektroskopie	135		
		3.4.2	Raman-Mikroskopie	135		
		3.4.3	Raman-Spektroskopie auf Oberflächen	136		
	3.5	Anwer	ndungen der nichtlinearen Raman-Spektroskopie	137		
	3.6	Vor-ui	nd Nachteile der Raman-Spektroskopie	138		
4	Laserspektroskopie in Molekularstrahlen					
	4.1	Reduk	tion der Doppler-Breite in kollimierten Strahlen	141		
	4.2	Abküh	ılung von Molekülen in Überschallstrahlen	147		
	4.3	Bildun	ng und Spektroskopie von Clustern und van der			
		Waals-	-Molekülen in kalten Molekularstrahlen	156		
	4.4	Nichtl	ineare Spektroskopie in Molekularstrahlen	161		
	4.5	Kollin	eare Laserspektroskopie in schnellen Ionenstrahlen	163		
	4.6		oskopie in kalten Ionenstrahlen			
	4.7		Photodetachment in Molekülstrahlen			
	4.8	Massenselektive Laserspektroskopie in Molekularstrahlen 1				
5	Opt		Pumpen und Doppelresonanz-Verfahren			
	5.1		ches Pumpen			
	5.2	-	che/Radiofrequenz-Doppelresonanz			
		5.2.1	Grundlagen	181		
		5.2.2	Laser-Hochfrequenz-Doppelresonanz-Spektroskopie			
			in Molekularstrahlen			
	5.3		che/Mikrowellen-Doppelresonanz			
	5.4		che/Optische Doppelresonanz			
		5.4.1	Vereinfachung komplexer Absorptionsspektren	190		
		5.4.2	Stufenweise Anregung und Spektroskopie			
			von Rydberg-Zuständen			
		5.4.3	Molekulare Rydbergzustände			
		5.4.4	Resonante induzierte Raman-Streuung			
		5.4.5	Beispiele für Doppelresonanz-Experimente			
	5.5	Spezie	elle Doppelresonanz-Techniken	207		

		5.5.1	Polarisations-Markierung	207.		
		5.5.2	Mikrowellen/Optische Doppelresonanz-Polarisations-			
			Spektroskopie	208		
		5.5.3	STIRAP-Technik	208		
		5.5.4	Photo-Assoziations-Spektroskopie	210		
6	Zeit	Zeitaufgelöste Laserspektroskopie				
	6.1	Erzeug	gung kurzer Lichtpulse	213		
		6.1.1	Zeitverhalten gepulster Laser	213		
		6.1.2	Güteschaltung von Laserresonatoren	215		
		6.1.3	Modenkopplung und Pikosekundenpulse	219		
		6.1.4	Erzeugung von Femtosekunden-Pulsen	227		
		6 .1.5	Fiberlaser	241		
		6.1.6	Solitonenlaser	243		
		6.1.7	Erzeugung durchstimmbarer kurzer Pulse	246		
		6.1.8	Erzeugung leistungsstarker ultrakurzer Pulse	249		
		6.1.9	Der Vorstoß in den Attosekunden-Bereich			
		6.1.10	Formung des Zeitprofils optischer Pulse	256		
		6.1.11	Zusammenfassung der Erzeugung kurzer Pulse	258		
	6.2	Messu	ing kurzer Lichtpulse			
		6.2.1	Streakkamera	259		
		6.2.2	Optischer Korrelator zur Messung kurzer Lichtpulse	261		
		6.2.3	FROG-Technik			
		6.2.4	SPIDER-Technik	267		
	6.3	Leben	sdauermessungen mit Lasern	271		
		6.3.1	Die Phasenmethode	273		
		6.3.2	Messung der Abklingkurve nach Einzelpulsanregung	274		
		6.3.3	Die Methode der verzögerten Koinzidenzen	275		
		6.3.4	Lebensdauermessungen in schnellen Atom-			
			und Ionenstrahlen	277		
	6.4	Spekti	roskopie im Piko- und Femtosekundenbereich	280		
		6.4.1	Stoßinduzierte Relaxation von Molekülen in Flüssigkeiten	281		
		6.4.2	Elektronische Relaxation in Halbleitern	282		
		6.4.3	Untersuchung molekularer Dynamik			
			auf der Femtosekundenskala	282		
		6.4.4	Attosekunden Spektroskopie von Prozessen in inneren			
			Schalen von Atomen	286		
		6.4.5	Erzeugung transienter optischer Gitter	289		
		6.4.6	Untersuchung schneller Photochemischer Reaktionen			
7	Koł	närente	Spektroskopie	291		
	7.1	Level-	-Crossing-Spektroskopie	292		
		7.1.1	Grundlagen			
		7.1.2	Quantenmechanisches Modell			
		713	Induzierta Level Crossing Snektroskopia	208		

XII Inhaltsverzeichnis

7.2	Quant	tenbeat-Spektroskopie	
	7.2.1	Grundprinzip der Quantum-Beat Spektroskopie	. 301
	7.2.2	Experimentelle Techniken	
	7.2.3	Molekulare Quantum-Beat Spektroskopie	. 306
7.3	Photo	nen-Echo	. 308
7.4	Optiso	che Nutation und freier Induktionszerfall	. 313
7.5	Optiso	che Pulszug-Interferenzspektroskopie	. 316
7.6	Selbsti	induzierte Transparenz	. 317.
7.7 .	Kohär	ente Dunkelzustände und Dunkelresonanzen	. 319
7.8	Kohär	ente Überlagerungsspektroskopie	. 321
		lations-Spektroskopie	. 323
	7.9.1	Grundlagen	
	7.9.2	Messung des Homodyn-Spektrums	. 326
	7.9.3	Fluoreszenz-Korrelations-Spektroskopie	. 328
	7.9.4	Heterodyne Korrelations-Spektroskopie	. 330
7.10	Optiso	che Kohärenztomographie	. 331
T			225
			. 333
8.1			226
8.2			
		≛	. 341
	8.2.2		
			. 346
8.3			
			. 350
	8.3.3		
			. 354
8.4			
	_		
8.6	Stöße	im Strahlungsfeld eines Lasers	. 365
Neu	ere Ent	twicklungen in der Laserspektroskopie	. 371
9.1			
	9.1.1		
	9.1.2		
	9.1.3	•	
		. ,	. 380
	9.1.5		
9.2		. •	
	7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 Lase 8.1 8.2 8.3 8.4 8.5 8.6 Neu 9.1	7.2.1 7.2.2 7.2.3 7.3 Photo 7.4 Optiso 7.5 Optiso 7.6 Selbst 7.7 Kohär 7.8 Kohär 7.9 Korre 7.9.1 7.9.2 7.9.3 7.9.4 7.10 Optiso Laserspekt 8.1 Hochr und V 8.2 Messu 8.2.1 8.2.2 8.3.3 8.4 Spekt im ele 8.3.1 8.3.2 8.3.3 8.4 Spekt in gel 8.5 Spekt in gel 8.5 Spekt in gel 8.5 Spekt 9.1 Optis 9.1.1 9.1.2 9.1.3 9.1.4	7.2.1 Grundprinzip der Quantum-Beat Spektroskopie 7.2.2 Experimentelle Techniken 7.2.3 Molekulare Quantum-Beat Spektroskopie 7.3 Photonen-Echo 7.4 Optische Nutation und freier Induktionszerfall 7.5 Optische Pulszug-Interferenzspektroskopie 7.6 Selbstinduzierte Transparenz 7.7 Kohärente Dunkelzustände und Dunkelresonanzen 7.8 Kohärente Überlagerungsspektroskopie 7.9 Korrelations-Spektroskopie 7.9.1 Grundlagen 7.9.2 Messung des Homodyn-Spektrums 7.9.3 Fluoreszenz-Korrelations-Spektroskopie 7.9.4 Heterodyne Korrelations-Spektroskopie 7.9.6 Optische Kohärenztomographie Laserspektroskopie von Stoßprozessen 8.1 Hochauflösende Laserspektroskopie der Stoßverbreiterung 1.2 und Verschiebung von Spektrallinien 8.2 Messung inelastischer Stoßquerschnitte durch LIF 8.2.1 Stoß-Satelliten im Fluoreszenzspektrum 8.2.2 Andere Verfahren zur Messung von Stößen 1.2 im angeregten Zustand 8.2.3 Stöße zwischen angeregten Atomen 8.3 Spektroskopische Bestimmung inelastischer Stoßprozesse 1.3 im elektronischen Grundzustand 8.3.1 Zeitaufgelöster Fluoreszenznachweis 8.3.2 Zeitaufgelöster Fluoreszenznachweis 8.3.3 Spektroskopie von Stößen im Grundzustand 1.3 mit kontinuierlichen Lasern 8.4 Spektroskopische Messung differenzieller Stoßquerschnitte 1.3 in gekreuzten Molekularstrahlen 8.5 Spektroskopie reaktiver Stoßprozesse 8.6 Stöße im Strahlungsfeld eines Lasers Neuere Entwicklungen in der Laserspektroskopie 9.1 Optische Ramsey-Resonanzen 9.1.1 Grundlagen der Ramsey-Interferenzen 9.1.2 Zweiphotonen-Ramsey-Resonanzen 9.1.3 Nichtlineare Ramsey-Interferenzen 9.1.4 Optische Ramsey-Resonanzen durch äquidistante Folge von Laserpulsen 9.1.5 Atomarer Springbrunnen

	9.3	Optisc	hes Kühlen und Speichern von Atomen	. 387	
		9.3.1	Optisches Kühlen durch Photonenrückstoß	. 387	
		9.3.2	Optische Melasse	. 394	
		9.3.3	Magneto-optische Falle	. 396	
		9.3.4	Grenzen der optischen Kühlung	. 400	
		9.3.5	Kräfte auf einen induzierten Dipol im Lichtfeld	. 404	
		9.3.6	Optische Mikrofallen	. 405	
		9.3.7	Bose-Einstein-Kondensation		
		9.3.8	Eigenschaften des Bose-Einstein-Kondensats	. 418	
		9.3.9	Atomlaser	. 421	
		9.3.10	Erzeugung und Speicherung kalter Fermi-Gase	. 422	
		9.3.11	Bildung kalter Moleküle		
		9.3.12	Kalte Atome in optischen Gittern	. 426	
	9.4	Spektr	oskopie an einzelnen Ionen		
		9.4.1	Ionenfallen		
		9.4.2	Seitenbandkühlung	. 431	
		9.4.3	Direkte Beobachtung von Quantensprüngen		
		9.4.4	Wigner-Kristalle in Ionenfallen		
		9.4.5	Quantencomputer mit gespeicherten Ionen		
	9.5	Der Ei	natom-Maser		
	9.6		sung innerhalb der natürlichen Linienbreite		
	9.7				
		9.7.1	Optische Frequenzketten		
		9.7.2	Optische Frequenz-Teilung		
		9.7.3	Optischer Frequenzkamm		
		9.7.4	Anwendungen des optischen Frequenzkammes		
	9.8	Kann	man das Photonenrauschen überlisten?		
		9.8.1	Phasen- und Amplitudenschwankungen des Lichtfeldes		
		9.8.2	Quetschzustände		
		9.8.3	Realisierung von Quetschzuständen		
		9.8.4	Anwendungen der "Squeezing-Technik"		
			auf Gravitationswellen-Detektoren	. 463	
10	Anw	endun	gen der Laserspektroskopie	. 467	
	10.1	Anwei	ndungen in der Chemie	. 467	
		10.1.1	Laserspektroskopie in der analytischen Chemie	. 467	
		10.1.2	Laserinduzierte chemische Reaktionen	. 470	
		10.1.3	Kohärente Kontrolle chemischer Reaktionen	. 474	
		10.1.4	Laser-Femtochemie	. 477	
	10.2	Isotop	entrennung mit Lasern	. 479	
	10.3		spektroskopie in der Umwelt- und Atmosphärenforschung		
		10.3.1	• • •		
		10.3.2			
		10.3.3			
	10.4	Anwe	ndungen auf technische Probleme		

Inhaltsverzeichnis

XIII

XIV Inhaltsverzeichnis

10.4.1	Untersuchung von Verbrennungsvorgängen	492
10.4.2	Einsatz der Laserspektroskopie in der Materialforschung	495
10.4.3	Messung von Strömungsgeschwindigkeiten von Gasen	496
Anwen	ndungen in der Biologie	498
10.5.1	Energietransfer in DNA-Komplexen	499
10.5.2	-	
10.5.3	Korrelationsspektroskopie von Mikrobenbewegungen	501
10.5.4	Lasermikroskop	502
10.5.5	Konfokale Mikroskopie biologischer Objekte	503
10.5.6	Räumliche Auflösung biologischer Strukturen	
	jenseits der Beugungsgrenze	504
10.5.7		
Mediz	inische Anwendungen	508
10.6.1	Analyse von Atemgasen	509
10.6.2	Laser in der Augendiagnostik	512
10.6.3	Laser in der Inneren Medizin	513
10.6.4	Laserspektroskopie in der Ohrenheilkunde	514
10.6.5	Tumordiagnose und Therapie	514
10.6.6	Optische Tomographie in der Medizin	517
10.6.7	Laserlithotripsie	518
10.6.8	Weitere Anwendungen der Laserspektroskopie	
	in der Medizin	519
		52
eichnis		57 1
	10.4.2 10.4.3 Anwer 10.5.1 10.5.2 10.5.3 10.5.4 10.5.5 10.5.6 10.6.1 10.6.2 10.6.3 10.6.4 10.6.5 10.6.6 10.6.7	10.4.3 Messung von Strömungsgeschwindigkeiten von Gasen Anwendungen in der Biologie 10.5.1 Energietransfer in DNA-Komplexen 10.5.2 Zeitaufgelöste Messungen biologischer Prozesse 10.5.3 Korrelationsspektroskopie von Mikrobenbewegungen 10.5.4 Lasermikroskop 10.5.5 Konfokale Mikroskopie biologischer Objekte 10.5.6 Räumliche Auflösung biologischer Strukturen jenseits der Beugungsgrenze 10.5.7 Einzel-Molekül-Nachweis Medizinische Anwendungen 10.6.1 Analyse von Atemgasen 10.6.2 Laser in der Augendiagnostik 10.6.3 Laser in der Inneren Medizin 10.6.4 Laserspektroskopie in der Ohrenheilkunde 10.6.5 Tumordiagnose und Therapie 10.6.6 Optische Tomographie in der Medizin 10.6.7 Laserlithotripsie 10.6.8 Weitere Anwendungen der Laserspektroskopie