Contents

List of Definitions and Theorems			vii
Lis	List of Figures		
Lis	List of Algorithms		
Pr	eface	•	xv
1	Intro 1.1	oduction Thesis Overview	1 2
2	Prel	iminaries	5
	2.1	Notation	5
	2.2	The Dynamic Network Model	6
	2.3	Fundamental Problems	9
	2.4	Existing Results	9
		2.4.1 The Algorithm by Kuhn, Lynch, and Oshman	10
		2.4.2 Lower Bounds for Token-Forwarding Algorithms	14
		2.4.3 Randomized Network Coding Algorithms	16
	2.5	Related Work	18
3	Geo	metric Dynamic Networks	21
	3.1	The Geometric Dynamic Network Model	22
	3.2	Related Work	23
	3.3	Upper Bounds for Token-Forwarding Algorithms	24
	3.4	Lower Bounds for Token-Forwarding Algorithms	26
	3.5	Conclusion and Unanswered Questions	32

Contents

4	Cou	nting versus Token Dissemination	33
	4.1	Models & Problems	35
		4.1.1 Token and Unique ID Universes and Message Sizes	35
	4.2	Related Work	36
	4.3	Same Predecessors & Counting	37
	4.4	Set Equality & Same Predecessors	39
	4.5	Two-Party Communication & Set Equality	41
	4.6	Two-Party Token Dissemination & Set Equality	43
	4.7	Two-Party Token Dissemination & Counting	44
	4.8	Conclusion and Unanswered Questions	45
5	Con	ntinuous Aggregation in Dynamic Networks	47
	5.1	Models & Problems	51
	5.2	Related Work	53
	5.3	Static Networks	54
		5.3.1 Noncontinuous Problems	54
		5.3.2 Continuous Problems	56
	5.4	T-Stable Dynamic Networks	58
		5.4.1 Graph Patching Technique	58
		5.4.2 Noncontinuous Extremum	60
		5.4.3 Noncontinuous Summation	61
		5.4.4 Continuous Extremum	63
		5.4.5 Continuous Summation	65
	5.5	Geometric Dynamic Networks	69
	5.6	Conclusion and Unanswered Questions	69
6	Сог	nclusion & Outlook	71
-	6.1	Future Research Directions	72
в	ibliog	graphy	75

List of Definitions and Theorems

2.1	Definition ((Un)directed Dynamic Network)	6
2.2	Definition (<i>T</i> -Stability)	6
2.3	Definition (<i>T</i> -Interval Connectivity)	7
2.4	Definition (Local Broadcast Communication)	7
2.5	Definition (Oblivious Adversary)	8
2.6	Definition (Weakly Adaptive Adversary)	8
2.7	Definition (Strongly Adaptive Adversary)	8
2.8	Problem (k-Token Dissemination)	9
2.9	Problem (All-to-All Token Dissemination)	9
2.10	Problem (Counting)	9
2.11	Theorem (k-Token Dissemination under T-Stability / T-Interval	
	Connectivity)	11
2.12	Remark (<i>k</i> -Token Dissemination Having an Upper Bound on <i>n</i>).	11
2.13	Problem (k-Verification)	12
2.14	Theorem (Counting under T-Stability / T-Interval Connectivity)	12
2.15	Problem (k-Committee Election)	12
2.16	Lemma (k-Committee Election under T-Stability / T-Interval Con-	
	nectivity)	14
2.17	Definition (Token-Forwarding Algorithm)	14
2.18	Definition (Knowledge-Based Token-Forwarding Algorithm)	14
2.19		
	Algorithms)	15
2.20		
	rithms)	16
2.21	Theorem (k-Token Dissemination with Network Coding)	17

3.1	Lemma (Interval Connectivity in Geometric Dynamic Networks)	24
3.2	Lemma (Stable Vertex Connected Subgraphs in Geometric Dy-	25
	namic Networks)	25 25
3.3	Theorem (<i>k</i> -Token Dissemination in Geometric Dynamic Networks)	
3.4	Corollary (Counting in Geometric Dynamic Networks)	26
3.5	Theorem (Lower Bound for Knowledge-Based Token-Forwarding	•
	Algorithms in Geometric Dynamic Networks with $R = 1$)	26
3.6	Theorem (Lower Bound for Knowledge-Based Token-Forwarding	
	Algorithms in Geometric Dynamic Networks with $R \ge 1$)	29
3.7	Corollary (Geometric Dynamic Networks with Constant Com-	
	munication Ranges and Speeds)	30
4.1	Unanswered Question (Complexity of Counting)	33
4.2	Problem (Two-Party <i>k</i> -Token Dissemination)	35
4.3	Definition (Same Predecessors Problem SP)	38
4.4	Lemma (Same Predecessors versus Counting)	38
4.5	Definition (Set Equality Problem EQ_n)	40
4.6	Lemma (Set Equality versus Same Predecessors)	40
4.7	Theorem (Two-Way Complexity Lower Bound)	41
4.8	Lemma (Two-Way Complexity Set Equality Problem)	42
4.9	Lemma (One-Way Communication Set Equality Problem)	43
4.10	Lemma (Two-Party Token Dissemination versus Set Equality)	43
4.11	Theorem (Two-Party Token Dissemination versus Counting)	44
4.12	Corollary (Lower Bound for Counting)	45
4.13	Corollary (Upper Bound for Two-Party Token Dissemination)	45
4.14	Unanswered Question (Complexity of Two-Party Token Dissemi-	
	nation)	45
5.1	Problem (Noncontinuous Extremum)	51
5.2	Problem (Noncontinuous Summation)	51
5.3	Problem (Noncontinuous Dissemination)	52
5.4	Problem (Continuous Extremum)	52
5.5	Problem (Continuous Summation)	52
5.6	Problem (Continuous Dissemination)	52
5.7	Definition (Output Rate)	53
5.8	Definition (Delay)	53
5.9	Theorem (Noncontinuous Extremum, Summation, and Dissemi-	
011	nation in Static Networks)	54
5.10		
0.10	works)	56
5.11	Theorem (Continuous Dissemination in Static Networks)	57
5.12		58
0.12		00

5.13	Theorem (Deterministic $\left(\frac{D}{2}, D\right)$ -Patching)	59
5.14	Theorem (Randomized $(\frac{D}{2}, D)$ -Patching)	59
5.15	Theorem (Deterministic $\left(\frac{D}{2}, D\right)$ -Patching in Growth-Bounded	
	Graphs)	60
5.16	Theorem (Noncontinuous Extremum in T-Stable Dynamic Net-	
	works)	60
5.17		
	works)	61
5.18	Corollary (Noncontinuous Summation in T-Stable Dynamic Net-	
	works, Deterministic Algorithm)	61
5.19		
	works, Randomized Algorithm)	62
5.20	(63
5.21		
	Deterministic Algorithm)	64
5.22		
	Randomized Algorithm)	64
5.23		65
5.24	Corollary (Continuous Summation in T-Stable Dynamic Net-	
	works, Deterministic Algorithm)	66
5.25	Corollary (Continuous Summation in T-Stable Dynamic Net-	
	works, Randomized Algorithm)	67
6.1	Unanswered Question (Complexity of Finding an Upper Bound	
	on the Number of Nodes)	72
6.2	Unanswered Question (Complexity of the Same Input Problem).	72

List of Figures

3.1	Lower Bound Construction for $R = 1$: Initial Positions	27
3.2	Lower Bound Construction for $R = 1$: Following Positions	28
3.3	Lower Bound Construction for $R \ge 1$: Following Positions	31
4.1	Construction of a Special Dynamic Network \mathcal{G}_d	37
4.2	Construction of a Dynamic Channel Network \mathcal{G}'_d	39
4.3	Two-Party Communication	41
5.1	Example for a $(\frac{D}{2}, D)$ -Patching	59

List of Algorithms

2.1	k-Token Dissemination under 2T-Stability / 2T-Interval Connectivity	11
5.1	Noncontinuous Extremum in Static Networks (and 1-Stable Dy-	
	namic Networks)	54
5.2	Noncontinuous Summation in Static Networks	55
5.3	Noncontinuous Dissemination in Static Networks	56
5.4	Continuous Extremum and Summation in Static Networks	57
5.5	Continuous Dissemination in Static Networks	57
5.6	$(\frac{D}{2}, D)$ -Patching in Static Networks	58
5.7	Noncontinuous Summation in <i>T</i> -Stable Dynamic Networks	61
5.8	Continuous Extremum in <i>T</i> -Stable Dynamic Networks	64
5.9	Continuous Summation in T-Stable Dynamic Networks	65
	-	