Contents

Abo	ut this	book	<i>page</i> xiii
Acki	owle	dgments	xvii
Intro	ductio	on	xix
0			1
U			· · ·
	0.1	Representing objects as strings	2
	0.2	Decision problems/languages	3
	0.3	Big-oh notation	3
	EXEI	RCISES	4
PAR	TONE	: BASIC COMPLEXITY CLASSES	7
1	The computational model—and why it doesn't matter		. 9
	1.1	Modeling computation: What you really need to know	10
	1.2	The Turing machine	11
	1.3	Efficiency and running time	15
	1.4	Machines as strings and the universal Turing machine	19
	1.5	Uncomputability: An introduction	21
	1.6	The Class P	24
	1.7	Proof of Theorem 1.9: Universal simulation in $O(T \log T)$ -time	29
	CHAPTER NOTES AND HISTORY		32
	EXERCISES		34
2	NP	and NP completeness	. 38
	2.1	The Class NP	39
	2.2	Reducibility and NP-completeness	42
	2.3	The Cook-Levin Theorem: Computation is local	44
	2.4	The web of reductions	50
	2.5	Decision versus search	54
	2.6	coNP, EXP, and NEXP	55
	2.7	More thoughts about P , NP , and all that	57
	CHA	PTER NOTES AND HISTORY	62
	EXEI	RCISES	63

vii

3	Diagonalization		68	
	3.1 Time Hierarchy Theorem			
	3.2	Nondeterministic Time Hierarchy Theorem	69	
	3.3	Ladner's Theorem: Existence of NP-intermediate problems	71	
	3.4	Oracle machines and the limits of diagonalization	72	
	СНАР	TER NOTES AND HISTORY	76	
	EXER	CISES	77	
4	Space complexity			
	4.1	Definition of space-bounded computation	78	
	4.2	PSPACE completeness	83	
	4.3	NL completeness	87	
	СНАР	TER NOTES AND HISTORY	93	
	EXERCISES		93	
5	The polynomial hierarchy and alternations			
	5.1	The Class Σ_2^p	96	
	5.2	The polynomial hierarchy	97	
	5.3	Alternating Turing machines	99	
	5.4	Time versus alternations: Time-space tradeoffs for SAT	101	
	5.5	Defining the hierarchy via oracle machines	102	
	CHAPTER NOTES AND HISTORY		104	
	EXERCISES		104	
6	Boolean circuits			
	6.1	Boolean circuits and \mathbf{P}_{indv}	107	
	6.2	Uniformly generated circuits	111	
	6.3	Turing machines that take advice	112	
	6.4	P _{foolv} and NP	113	
	6.5	Circuit lower bounds	115	
	6.6	Nonuniform Hierarchy Theorem	116	
	6.7	Finer gradations among circuit classes	116	
	6.8	Circuits of exponential size	119	
	CHA	PTER NOTES AND HISTORY	120	
	EXEI	RCISES	121	
7	Randomized computation		123	
	7.1	Probabilistic Turing machines	124	
	7.2	Some examples of PTMs	126	
	7.3	One-sided and "zero-sided" error: RP, coRP, ZPP	131	
	7.4	The robustness of our definitions	132	
	7.5	Relationship between BPP and other classes	135	
	7.6	Randomized reductions	138	
	7.7	Randomized space-bounded computation	139	
	СНА	PTER NOTES AND HISTORY	140	
	EXERCISES		141	

8	3 Interactive proofs		
	8.1 Interactive proofs: Some variations	144	
	8.2 Public coins and AM	150	
	8.3 $IP = PSPACE$	157	
	8.4 The power of the prover	162	
	8.5 Multiprover interactive proofs (MIP)	163	
	8.6 Program checking	164	
	8.7 Interactive proof for the permanent	167	
	CHAPTER NOTES AND HISTORY	169	
	EXERCISES	170	
9	Cryptography		
	9.1 Perfect secrecy and its limitations	173	
	9.2 Computational security, one-way functions, and pseudorandom generators	175	
	9.3 Pseudorandom generators from one-way permutations	180	
	9.4 Zero knowledge	186	
	9.5 Some applications	189	
	CHAPTER NOTES AND HISTORY	194	
	EXERCISES	197	
10	Quantum computation	201	
	10.1 Ouantum weirdness: The two-slit experiment	202	
	10.2 Quantum superposition and qubits	204	
	10.3 Definition of quantum computation and BOP	209	
	10.4 Grover's search algorithm	216	
	10.5 Simon's algorithm	219	
	10.6 Shor's algorithm: Integer factorization using quantum computers	221	
	10.7 BOP and classical complexity classes	230	
	CHAPTER NOTES AND HISTORY	232	
	EXERCISES	234	
11	PCP theorem and hardness of approximation: An introduction	237	
	11.1 Motivation: Approximate solutions to NP-hard optimization problems	238	
	11.2 Two views of the PCP Theorem	240	
	11.3 Equivalence of the two views	244	
	11.4 Hardness of approximation for vertex cover and independent set	247	
	11.5 NP \subseteq PCP (poly(n), 1); PCP from the Walsh-Hadamard code	249	
	CHAPTER NOTES AND HISTORY	254	
	EXERCISES	255	
PART	TWO: LOWER BOUNDS FOR CONCRETE COMPUTATIONAL MODELS	257	
12	Decision trees	259	
	12.1 Decision trees and decision tree complexity	259	
,	12.2 Certificate complexity	239	
	12.3 Randomized decision trees	202	
		<u> </u>	

Contents

	12.4 Some techniques for proving decision tree lower bounds	264
	CHAPTER NOTES AND HISTORY	268
	EXERCISES	269
13	Communication complexity	270
	13.1 Definition of two-party communication complexity	271
	13.2 Lower bound methods	272
	13.3 Multiparty communication complexity	278
	13.4 Overview of other communication models	280
	CHAPTER NOTES AND HISTORY	282
	EXERCISES	283
14	Circuit lower bounds: Complexity theory's Waterloo	286
	14.1 AC ⁰ and Håstad's Switching Lemma	286
	14.2 Circuits with "counters": ACC	291
	14.3 Lower bounds for monotone circuits	293
	14.4 Circuit complexity: The frontier	297
	14.5 Approaches using communication complexity	300
	CHAPTER NOTES AND HISTORY	304
	EXERCISES	305
15	Proof complexity	307
	15.1 Some examples	307
	15.2 Propositional calculus and resolution	309
	15.3 Other proof systems: A tour d'horizon	313
	15.4 Metamathematical musings	315
	CHAPTER NOTES AND HISTORY	316
	EXERCISES	317
16	Algebraic computation models	318
	16.1 Algebraic straight-line programs and algebraic circuits	319
	16.2 Algebraic computation trees	326
	16.3 The Blum-Shub-Smale model	331
	CHAPTER NOTES AND HISTORY	334
	EXERCISES	336
PAR	T THREE: ADVANCED TOPICS	339
17	Complexity of counting	341
	17.1 Examples of counting problems	342
	17.2 The Class #P	344
	17.3 #P completeness	345
	17.4 Toda's theorem: $\mathbf{PH} \subseteq \mathbf{P}^{\#SAT}$	352
	17.5 Open problems	358
	CHAPTER NOTES AND HISTORY	359
	EXERCISES	359

х

Contents

18	Average case complexity: Levin's theory	361
	18.1 Distributional problems and distP	362
	18.2 Formalization of "real-life distributions"	365
	18.3 dist np and its complete problems	365
	18.4 Philosophical and practical implications	369
	CHAPTER NOTES AND HISTORY	371
	EXERCISES	371
19	Hardness amplification and error-correcting codes	373
•••	10.1 Mild to strong hardness: Yao's XOR lemma	375
	19.2 Tool: Error-correcting codes	379
	19.3 Efficient decoding	385
	19.5 Enterent decoding	386
	19.5 List decoding	392
	19.5 Last decoding: Getting to $\mathbf{RPP} - \mathbf{P}$	394
	15.0 Local list decoding. Certain to $\mathbf{D}(1 - 1)$	398
	EXERCISES	399
20	Demoderation	402
20		402
	20.1 Pseudorandom generators and derandomization	403
	20.2 Proof of Theorem 20.6: Nisan-Wigderson Construction	407
	20.3 Derandomization under uniform assumptions	415
	20.4 Derandomization requires circuit lower bounds	415
	CHAPTER NOTES AND HISTORY	410
	EXERCISES	419
21	Pseudorandom constructions: Expanders and extractors	421
	21.1 Random walks and eigenvalues	422
	21.2 Expander graphs	426
	21.3 Explicit construction of expander graphs	434
	21.4 Deterministic logspace algorithm for undirected connectivity	440
	21.5 Weak random sources and extractors	442
	21.6 Pseudorandom generators for space-bounded computation	449
	CHAPTER NOTES AND HISTORY	454
	EXERCISES	456
22	Proofs of PCP theorems and the Fourier transform technique	460
	22.1 Constraint satisfaction problems with nonbinary alphabet	461
	22.2 Proof of the PCP theorem	461
	22.3 Hardness of $2CSP_W$: Tradeoff between gap and alphabet size	472
	22.4 Håstad's 3-bit PCP Theorem and hardness of MAX-3SAT	474
	22.5 Tool: The Fourier transform technique	475
	22.6 Coordinate functions, long Code, and its testing	480
	22.7 Proof of Theorem 22.16	481
	22.8 Hardness of approximating SET-COVER	486
	22.9 Other PCP theorems: A survey	488
	22.A Transforming q CSP instances into "nice" instances	491
	CHAPTER NOTES AND HISTORY	493
	EXERCISES	

23	Why	are circuit lower bounds so difficult?	498
	23.1	Definition of natural proofs	499
	23.2	What's so natural about natural proofs?	500
	23.3	Proof of Theorem 23.1	503
	23.4	An "unnatural" lower bound	504
	23.5	A philosophical view	505
CHAPTER NOTES AND HISTORY		TER NOTES AND HISTORY	506
	EXER	CISES	507
Арр	endix	Mathematical background	508
	A .1	Sets, functions, pairs, strings, graphs, logic	509
	A.2	Probability theory	510
	A.3	Number theory and groups	517
	A.4	Finite fields	521
	A.5	Basic facts from linear Algebra	522
	A.6	Polynomials	527
Hints	and s	elected exercises	531
Main theorems and definitions		545	
Bibliography		549	
Inde	ĸ		575
Complexity class index		579	