Contents

	Acre	<i>page</i> ix		
	Note	Notation		
1	Intro	1		
	1.1	History of OWC	1	
	1.2	Advantages of OWC	3	
	1.3	Application areas	4	
	1.4	Li-Fi	5	
		1.4.1 Modulation	5	
		1.4.2 Multiple access	6	
		1.4.3 Uplink	7	
		1.4.4 The attocell	8	
		1.4.5 Cellular network	9	
	1.5	Challenges for OWC	9	
	1.6	Summary	11	
2	Opti	12		
	2.1	Introduction	12	
	2.2	System setup	13	
	2.3	Communication scenarios	14	
		2.3.1 Line-of-sight communication	15	
		2.3.2 Non-line-of-sight communication	15	
	2.4	Optical front-ends	16	
		2.4.1 Transmitter	16	
		2.4.2 Receiver	18	
	2.5	Optical wireless channel	20	
		2.5.1 Channel model	21	
		2.5.2 Path loss	21	
		2.5.3 Delay spread and coherence bandwidth	26	
		2.5.4 Channel equalization	27	
	2.6	Cellular network: a case study in an aircraft cabin	29	
		2.6.1 Ray-tracing for signal and interference modeling	31	

		2.6.2 Cabin setup: propagation paths, cellular configuration, and		
		wavelength reuse	32	
		2.6.3 Cabin geometry and materials	34	
		2.6.4 Access points	36	
		2.6.5 Photobiological safety	38	
		2.6.6 Estimation of line-of-sight path loss and shadowing	39	
		2.6.7 Estimation of non-line-of-sight path loss and shadowing	42	
		2.6.8 Signal-to-interference ratio maps	49	
	2.7	Summary	55	
3	Front-end non-linearity			
	3.1	Introduction	57	
	3.2	Generalized non-linear transfer function	58	
	3.3	Pre-distortion	59	
	3.4	Non-linear distortion of Gaussian signals	61	
		3.4.1 Analysis of generalized non-linear distortion	61	
		3.4.2 Analysis of double-sided signal clipping distortion	65	
	3.5	Summary	71	
4	Digi	tal modulation schemes	72	
	4.1	Introduction	72	
	4.2	Optical signals	72	
	4.3	Single-carrier modulation	77	
		4.3.1 Pulse position modulation: <i>M</i> -PPM	78	
		4.3.2 Pulse amplitude modulation: <i>M</i> -PAM	80	
		4.3.3 BER performance with pre-distortion in AWGN	82	
	4.4	Multi-carrier modulation	84	
		4.4.1 Optical OFDM with <i>M</i> -QAM: DCO-OFDM and ACO-OFDM	84	
		4.4.2 BER performance with generalized non-linear distortion in AWGN	89	
		4.4.3 BER performance with pre-distortion in AWGN	91	
	4.5	Summary	94	
5	Spectral efficiency and information rate			
	5.1	Introduction	95	
	5.2	Constraints on the information rate in OWC	96	
		5.2.1 Link impairments	97	
		5.2.2 On the maximization of information rate	98	
	5.3·	Modulation schemes in the flat fading channel with AWGN	99	
		5.3.1 Biasing optimization of Gaussian signals	100	
		5.3.2 Maximum spectral efficiency without an average optical power		
		constraint	103	
		5.3.3 Spectral efficiency with an average optical power constraint	106	

	5.4 Information rate of OFDM-based modulation with non-linear dis			110
		5.4.1	Biasing optimization of Gaussian signals	111
		5.4.2	Maximum information rate without an average optical power	
			constraint	113
		5.4.3	Information rate with an average optical power constraint	115
	5.5	Modula	ation schemes in the dispersive channel with AWGN	120
		5.5.1	Biasing optimization of Gaussian signals	121
		5.5.2	DC-bias penalty	122
		5.5.3	Equalizer penalty	124
		5.5.4	Maximum spectral efficiency without an average optical power	
			constraint	125
	5.6	Summa	ary	127
6	MIMO transmission			130
	6.1	Introdu	ction	130
	6.2	System		131
	6.3	MIMO	techniques	133
			Repetition coding	133
			Spatial multiplexing	135
			Spatial modulation	136
			Computational complexity	138
	6.4	BER pe	erformance	139
			Varying the separation of transmitters	139
		6.4.2	Varying the position of receivers	145
		6.4.3	Power imbalance between transmitters	146
		6.4.4	Link blockage	147
	6.5	Summa	rry	150
7	Thro	ughput o	f cellular OWC networks	151
	7.1	Introdu	ction	151
	7.2	-	throughput using static resource partitioning	152
			Signal-to-interference-and-noise ratio modeling	153
			Adaptive modulation and coding	156
			System throughput of optical OFDM in an aircraft cabin	157
	7.3	Interfer	ence coordination in optical cells using busy burst signaling	160
		7.3.1	System model	161
		7.3.2	Interference coordination in optical cells	162
		7.3.3	Busy burst principle	164
		7.3.4	Contention avoidance among neighboring cells	165
		7.3.5	User scheduling and fair reservation mechanism	168
		7.3.6	Link adaptation	169

	7.3.7	System throughput with busy burst signaling	170	
	7.3.8	System throughput with busy burst signaling and fair reservation		
		mechanism	178	
7.4	Summ	ary	181	
References				
Inde	x		197	