Contents

Ab	breviations	XXXII
1	Oxygen: boon yet bane—introducing oxygen toxicity and reactive species	1
	1.1 The history of oxygen: an essential air pollutant	1
	1.1.1 The paradox of photosynthesis	4
	1.1.2 Hyperoxia in history?	4
	1.1.3 Oxygen in solution	5
	1.2 Oxygen and anaerobes	7
	1.2.1 Why does oxygen injure anaerobes?	7
	1.3 Oxygen and aerobes	8
	1.3.1 Oxygen transport in mammals	8
	1.3.2 Oxygen sensing	8
	1.3.3 Mitochondrial electron transport	9
	1.3.4 The evolution of mitochondria	13
	1.3.5 Nicotinamide nucleotide reduction	14
	1.3.6 Bacterial electron transport chains	14
	1.4 Oxidases and oxygenases in aerobes	14
	1.4.1 Cytochromes P450	15
	1.5 Oxygen toxicity in aerobes	16
	1.5.1 Bacteria, plants, insects, and alligators	16
	1.5.2 Mammals	18
	1.5.2.1 Retinopathy of prematurity and brain damage	19
	1.5.2.2 Resuscitation of newborns	19
	1.5.2.3 Factors affecting oxygen toxicity	19
	1.6 What causes the toxic effects of oxygen?	20
	1.7 So free radicals contribute to oxygen toxicity and oxygen is one of	
	them? What then are free radicals?	20
	1.8 Oxygen and its radicals	22
	1.8.1 Singlet oxygen	22
	1.8.2 Superoxide radical	23
	1.9 How to describe them: oxygen radicals, oxygen-derived species,	
	reactive oxygen species, or oxidants?	23
	1.10 Sources of superoxide in aerobes	23
	1.10.1 Enzymes	24
	1.10.2 Auto-oxidation reactions	24
	1.10.3 Haem proteins	25
	1.10.4 Mitochondrial electron transport	25
	1.10.4.1 Mitochondrial DNA (mtDNA)	26

	1.10.5	Uncoupling proteins as antioxidants?	27
		Endoplasmic reticulum (ER)	27
		Nuclear and plasma membranes	27
		Bacterial superoxide production and biofilms	27
		ing about cell culture	28
	1.12 Some		29
	1.12 Some	Hambers	
2	Redox cher	nistry: the essentials	30
	2.1 Introd	luction	30
	2.2 How	do free radicals react?	30
	2.3 Radica	al chemistry: thermodynamics versus kinetics	32
	2.3.1	Redox chemistry	32
		2.3.1.1 Caveats	33
		2.3.1.2 Thermodynamics of oxygen reduction	33
	2.3.2	Reaction rates and rate constants	34
	2.3.3	Measuring reaction rates and rate constants	35
		2.3.3.1 Pulse radiolysis	35
		2.3.3.2 Stopped-flow methods	36
	2.4 Trans	ition metals: biocatalytic free radicals	36
	2.4.1	Iron	36
	2.4.2	Copper	37
	2.4.3	Manganese	38
	2.4.4	The Fenton reaction	38
	2.4.5	Iron chelators and Fenton chemistry: speed it up or slow it down?	39
	2.4.6	Reaction of copper ions with H ₂ O ₂	39
	2.5 Chem	nistry of other biologically important radicals	40
	2.5.1	Hydroxyl radical	40
		2.5.1.1 Generation	40
		2.5.1.2 Chemistry	41
	2.5.2	Carbonate radical	4 3
	2.5.3	Superoxide radical	43
		2.5.3.1 Making superoxide in the laboratory	45
		2.5.3.2 Reactions of superoxide	46
		2.5.3.3 Superoxide-iron interactions	46
		2.5.3.4 Reductants and Fenton chemistry	47
		2.5.3.5 Semiquinones and quinones	47
		2.5.3.6 Superoxide in hydrophobic environments	48
	2.5.4	Peroxyl and alkoxyl radicals	48
		2.5.4.1 Chemistry	48
	255	2.5.4.2 Generation of RO ₂ • /RO• radicals	49
	2.5.5	Sulphur radicals	50
		2.5.5.1 Formation	50
		2.5.5.2 Reactions	50
		2.5.5.3 Artefacts involving sulphur compounds2.5.5.4 The perils of dithiothreitol, thiourea, and N-acetylcysteine	51 52
	2.5.6	* *	
	2.3.0	2.5.6.1 Basic chemistry	52 52
		2.5.6.2 Nitric oxide as a free radical scavenger	53
		2.5.6.3 Physiological roles	53
		· - · -	, Jul

			2.5.6.4	Synthesis of nitric oxide	53
				Removal of NO [•] in vivo	55
			2.5.6.6	Nitrate and nitrite: inert end-products or	
				physiologically important sources of NO*?	55
			2.5.6.7	Nitric oxide donors	56
	2.6	Chem	nistry of l	biologically important non-radicals	58
		2.6.1	Peroxy	nitrite	58
				How does peroxynitrite cause damage?	61
				Toxicity of nitrotyrosine and nitrated proteins?	62
			2.6.1.3	Nitric oxide, superoxide, peroxynitrite, and nitrated	(0
			0 (1 4	lipids: a balance	62
				Can peroxynitrite be antioxidant?	63
		0.40		More things to beware of	63 63
		2.6.2		gen peroxide	63
				Production of H ₂ O ₂	64
		262		Chemistry of H ₂ O ₂	65
		2.0.3		alous acids and their derivatives Chlorhydrins, chloramines, and hydroxyl radical	0.5
			2.0.5.1	from HOCl	66
			2.6.3.2	Atomic chlorine	67
		2.6.4	Singlet		67
				Singlet O ₂ from photosensitization	67
			2.6.4.2	Type I and II reactions	67
			2.6.4.3	Biological damage by photosensitization	67
			2.6.4.4	Uses of photosensitization	69
			2.6.4.5	Other sources of singlet O ₂	71
			2.6.4.6	Reactions of singlet oxygen	71
		2.6.5	Ozone,	a radical or not?	75
2	Anti	ovidar	nt defend	es synthesized <i>in vivo</i>	77
,				es synthesized in vivo	
			duction		77
				tioxidant?	<i>7</i> 7
				efences: general principles	78 70
	3.4		-	antioxidant defence: minimize exposure to oxygen	78
				ing nitrogenases	79
			Stem ce		<i>7</i> 9
	3.5	Antic		efence enzymes: superoxide dismutases (SODs)	79
		3.5.1		-zinc SOD	79 70
			3.5.1.1	J 1	79
			3.5.1.2		80
				CuZnSOD structure	81 81
				Inhibitors of CuZnSOD	82
			3.5.1.6	Isoenzymes of CuZnSOD Pro-oxidant effects of CuZnSOD?	84
		252		nese SOD	85
		3.5.2		Where is MnSOD found?	85
			3.5.2.1		85
			3.5.2.3	· ·	85
		3.5.3		d cambialistic SODs	86
				Distribution of FeSODs	87

	0 = 4	T. 1 the accordance	87
		Evolution of SODs	87
		Nickel-containing SODs	87 87
	3.5.6	Assaying SOD	89
		3.5.6.1 Distinguishing between different types of SOD	90
		Using SOD enzymes to implicate superoxide	
	_	oxide reductases	90
3.7	-	oxide dismutases: evidence for their role in vivo?	91
		Gene knockout in bacteria and yeasts	91
	3.7.2	Transgenic animals	91
		3.7.2.1 Caveats about transgenic animals	93
		RNA interference	94
		Induction experiments	94
		SOD and oxygen toxicity in animals	94
		SOD and hibernation	95
3.8		aperoxide theory of oxygen toxicity: variations and anomalies	95
		Anaerobes with SOD and aerobes without SOD	95
		Manganese can replace SOD	95
3.9	Why i	s superoxide cytotoxic?	96
	3.9.1	Direct damage by superoxide or HO_2^{\bullet} ?	96
	3.9.2	Cytotoxicity of superoxide-derived species	96
		3.9.2.1 Hydrogen peroxide and peroxynitrite	96
		3.9.2.2 Hydroxyl radical	97
3.10	Gluta	thione in metabolism and cellular redox state	99
	3.10.1	GSH as a direct antioxidant	100
	3.10.2	Glutathione reductase	100
		3.10.2.1 Sources of NADPH	101
		Glutathione biosynthesis and degradation	102
	3.10.4	Defects in GSH metabolism: humans and other organisms	103
3.11	Gluta	thionylation: pathological or protective?	105
3.12	Protei	n-disulphide isomerase	106
3.13	Perox	iredoxins: leaders in peroxide metabolism	10ϵ
	3.13.1	Introducing thioredoxins, cofactors of peroxiredoxins	106
	3.13.2	The peroxiredoxins themselves	108
		3.13.2.1 Reaction with peroxynitrite	109
		3.13.2.2 Hyperoxidation	109
		3.13.2.3 Circadian rhythms	109
3.14		xidant defence enzymes: the glutathione peroxidase family	109
		A family of enzymes	110
		The role of selenium	110
		Watching GPx in action	111
		Consequences of GPx deficiency	111
3.15		enzymes using glutathione	111
		Glyoxalases	113
	3.15.2	The glutathione S-transferase superfamily	112
		3.15.2.1 Subclasses of GST	112
		3.15.2.2 GSTs and lipid peroxidation	113
3.16		sulphur-containing compounds and antioxidant defence	113
		Trypanothione: an antioxidant defence in some parasites	113
	3.16.2	Ergothioneine	11!

3.17	Antioxidant defence enzymes: catalases	115
	3.17.1 Catalase structure	115
	3.17.2 The reaction mechanism of catalase	116
	3.17.3 Catalase inhibitors	117
	3.17.4 Peroxidatic activity of catalase	117
	3.17.5 Subcellular location of catalase: the peroxisome	118
	3.17.6 Manganese-containing catalases	118
	3.17.7 Does catalase matter? Acatalasaemia	119
3.18	NADH oxidases	119
3.19	Antioxidant defence enzymes: an assortment of other peroxidases	119
	3.19.1 Cytochrome <i>c</i> peroxidase: another specific peroxidase	119
	3.19.2 'Non-specific' peroxidases	120
	3.19.3 Horseradish peroxidase	120
	3.19.4 Why do plants have so much peroxidase?	121
	3.19.5 Chloroperoxidase and bromoperoxidase	121
	3.19.6 Ascorbate peroxidase	122
	3.19.7 Peroxidase 'mimetics'	122
3.20	Making sense of it all. What fits where in peroxide metabolism?	122
	3.20.1 Peroxisomes and mitochondria	122
	3.20.2 Erythrocytes, lung, and yeast	122
	3.20.3 Allowing redox signalling?	123
	3.20.4 Bacteria	123
	3.20.5 Selenium deficiency: reinterpretation of an old paradigm	123
	3.20.5.1 Human selenium deficiency	123
	3.20.5.2 Selenium deficiency and antioxidant defences	124
3.21	Further co-operation	124
	3.21.1 Superoxide dismutases and peroxide-metabolizing enzymes	124
	3.21.2 Down syndrome	125
3.22	Antioxidant defence: sequestration of metal ions	125
	3.22.1 Iron metabolism	126
	3.22.1.1 Transferrin	127
	3.22.1.2 Other iron-binding proteins	127
	3.22.1.3 Iron within cells	128
	3.22.1.4 Ferritin	128
	3.22.1.5 Regulation of cellular iron balance	130
	3.22.2 Copper metabolism	131
	3.22.2.1 Caeruloplasmin and copper chaperones	131
	3.22.2.2 A phantom copper pool?	131 131
	3.22.2.3 Caeruloplasmin as an oxidase	131
	3.22.2.4 Caeruloplasmin as a peroxidase	132
	3.22.3 Haem and haem proteins: powerful pro-oxidants	132
	3.22.4 Metal ion sequestration: why do it?	133
	3.22.4.1 Keeping micro-organisms at bay	133
	3.22.4.2 Diminishing free-radical reactions 3.22.5 Metal ion sequestration: when it goes wrong	134
	3.22.5.1 Iron overload: diet-derived	134
	3.22.5.2 Iron overload: genetic	134
	3.22.5.3 Thalassaemias	135
	3.22.5.4 Non-transferrin-bound iron: is it pro-oxidant?	136
	3.22.5.5 Copper overload	136

κiν

	3.23		ions and antioxidant defence: comparing intracellular and	
			rellular strategies	137
			The intracellular environment: metals and oxidative damage	137
			Metallothioneins	137
		3.23.3	Extracellular antioxidant defence	138
			3.23.3.1 Low antioxidant defence enzymes and limited metal	
			ion availability	138 138
			3.23.3.2 Extracellular superoxide dismutase 3.23.3.3 Other extracellular SODs	140
			3.23.3.4 Binding haem and haemoglobin	140
			3.23.3.5 Albumin	141
			3.23.3.6 Artefacts with albumin	141
	3.24	Haem	ı oxygenase	142
			xidant protection by low-molecular-mass agents	
			esized <i>in vivo</i>	143
		-	Bilirubin	143
		3.25.2	α-Keto acids	144
			Melatonin	144
		3.25.4	Lipoic acid	144
			Coenzyme Q	146
		3.25.6	Uric acid	146
		3.25.7	Histidine-containing dipeptides	148
			Trehalose (α -D-glucopyranosyl-($1\rightarrow 1$)- α -D-glucopyranoside)	149
		3.25.9	Melanins: hair, skin, corals, fungi, and fish	149
	3.26	Antio	xidant defence: a question of sex	151
4	Anti	oxidan	ts from the diet	153
4			its from the diet	153
4	4.1	Introd		
4	4.1	Introd	luction	153
4	4.1	Introd Ascor 4.2.1	luction bic acid (vitamin C)	153 155
4	4.1	Introd Ascor 4.2.1 4.2.2	luction bic acid (vitamin C) Ascorbate as an antioxidant	153 155 157
4	4.1	Introd Ascor 4.2.1 4.2.2 4.2.3	luction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate	153 155 157 159
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3	luction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements?	153 155 157 159 160
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam	luction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements?	153 155 157 159 160 161
4	4.1 4.2	Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1	luction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E	153 155 157 159 160 161
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role	153 155 157 159 160 161 161
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? iin E Its physiological role What is vitamin E?	153 155 157 159 160 161 161 161
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E	153 155 157 159 160 161 161 161 161
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α-tocopheryl radicals	153 155 157 159 160 161 161 161 162 162
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Pluction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements?	153 155 157 159 160 161 161 161 162 162
4	4.1 4.2	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α-tocopheryl radicals Pro-oxidant effects of α-tocopherol? Processing of dietary vitamin E	153 155 157 159 160 161 161 161 162 162 165 165
4	4.1 4.2 4.3	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9	luction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α -tocopheryl radicals Pro-oxidant effects of α -tocopherol? Processing of dietary vitamin E The fate of γ -tocopherol α -Tocopherol deficiency Vitamin E: only an antioxidant, or something else as well?	153 155 157 159 160 161 161 161 162 162 165 165
4	4.1 4.2 4.3	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9	luction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α -tocopheryl radicals Pro-oxidant effects of α -tocopherol? Processing of dietary vitamin E The fate of γ -tocopherol α -Tocopherol deficiency Vitamin E: only an antioxidant, or something else as well? enoids	153 155 157 159 160 161 161 161 162 162 165 165 167
4	4.1 4.2 4.3	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 Carot 4.4.1	Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? $\frac{1}{2}$ Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α -tocopheryl radicals Pro-oxidant effects of α -tocopherol? Processing of dietary vitamin E The fate of γ -tocopherol α -Tocopherol deficiency Vitamin E: only an antioxidant, or something else as well? enoids Carotenoid chemistry	153 155 157 159 160 161 161 161 162 162 165 165 167 167
4	4.1 4.2 4.3	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 Carot 4.4.1 4.4.2	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? sin E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α-tocopheryl radicals Pro-oxidant effects of α-tocopherol? Processing of dietary vitamin E The fate of γ-tocopherol α-Tocopherol deficiency Vitamin E: only an antioxidant, or something else as well? enoids Carotenoid chemistry Metabolic roles of carotenoids	153 155 157 159 160 161 161 161 162 162 165 165 165 167 167
4	4.1 4.2 4.3	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 Carot 4.4.1 4.4.2	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α-tocopheryl radicals Pro-oxidant effects of α-tocopherol? Processing of dietary vitamin E The fate of γ-tocopherol α-Tocopherol deficiency Vitamin E: only an antioxidant, or something else as well? enoids Carotenoid chemistry Metabolic roles of carotenoids Carotenoids and vitamin A as antioxidants?	153 155 157 159 160 161 161 161 162 162 165 165 167 167 167 170 170 171
4	4.1 4.2 4.3	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 Carot 4.4.1 4.4.2	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α-tocopheryl radicals Pro-oxidant effects of α-tocopherol? Processing of dietary vitamin E The fate of γ-tocopherol α-Tocopherol deficiency Vitamin E: only an antioxidant, or something else as well? enoids Carotenoid chemistry Metabolic roles of carotenoids Carotenoids and vitamin A as antioxidants? 4.4.3.1 Do carotenoids react with radicals?	153 155 157 159 160 161 161 161 162 162 165 165 167 167 167 170 170 171
4	4.1 4.2 4.3	Introd Ascor 4.2.1 4.2.2 4.2.3 4.2.4 Vitam 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 Carot 4.4.1 4.4.2	duction bic acid (vitamin C) Ascorbate as an antioxidant 'Recycling' of ascorbate Pro-oxidant effects of ascorbate Taking ascorbate supplements? in E Its physiological role What is vitamin E? Chemistry of vitamin E Recycling of α-tocopheryl radicals Pro-oxidant effects of α-tocopherol? Processing of dietary vitamin E The fate of γ-tocopherol α-Tocopherol deficiency Vitamin E: only an antioxidant, or something else as well? enoids Carotenoid chemistry Metabolic roles of carotenoids Carotenoids and vitamin A as antioxidants?	153 155 157 159 160 161 161 161 162 162 165 165 167 167 167 170 170 171

	4.5 Flavonoids and other phenols	173
	4.5.1 Phenols in the diet	175
	4.5.1.1 Do humans and other animals absorb phenols?	176
	4.5.2 Are phenols antioxidants in vivo?	1 77
	4.5.2.1 More than antioxidants	178
	4.5.3 Pro-oxidant effects of phenols?	178
	4.5.4 Herbal medicine	179
	4.6 Dietary antioxidants: insights from epidemiology	180
	4.6.1 Problems of interpretation	182
	4.6.2 The gold standard of intervention trials: hope unfulfilled	183
	4.6.3 The need for biomarkers	185
	4.6.3.1 Do fruits and vegetables decrease the risk of disease	by ·
	lowering oxidative damage?	187
	4.6.4 Cardiovascular intervention trials	188
	4.6.5 Cancer prevention by antioxidants?	189
	4.6.5.1 The Finnish study (α -tocopherol/ β -carotene [ATBC]	
	cancer prevention study) and CARET	189
	4.6.6 Some rays of hope and a gender bias	190
	4.6.7 Lycopene, other carotenoids, and human disease	190
	4.6.8 Antioxidants and neuroprotection; insights from epidemiological experiments and the second experiments are second experiments.	ogy? 190
	4.7 Other dietary constituents and oxidative damage	196
	4.8 What does it all mean? What should we poor mortals eat?	197
5	5 Oxidative stress and redox regulation: adaptation, damage, repair,	
	senescence, and death	199
	5.1 Introduction	199
	5.1.1 Defining oxidative stress and oxidative damage	199
	5.2 Consequences of oxidative stress	200
	5.2.1 Proliferation	200
	5.2.2 Adaptation	201
	5.2.3 Migration and adhesion	202
	5.2.4 Cell injury and senescence	202
	5.2.5 Poly(ADP-ribose)polymerase	203
	5.3 Oxidative stress causes changes in cellular ion metabolism	204
	5.3.1 Basic principles	204
	5.3.1.1 Cell volume changes	204
	5.3.2 Calcium	204
	5.3.2.1 Keeping it low	204
	5.3.2.2 Oxidative stress raises Ca ²⁺ levels	206
	5.3.2.3 Ca ²⁺ and mitochondria	207
	5.3.3 Oxidative stress and transition metal ion mobilization	208
	5.3.3.1 Demonstrating iron mobilization	208
	5.3.4 Copper	209
	5.4 Consequences of oxidative stress: cell death	212
	5.4.1 Basic definitions	212
	5.4.2 Apoptosis	215
	5.4.2.1 Molecular mechanisms of apoptosis	215
	5.4.2.2 Reactive species and apoptosis	218
	5.5 Redox regulation 5.5.1 What is it and how does it work?	219
		219

	5.5.2	Bacteria	l redox regulation: oxyR, soxRS and HOCl-sensitive	
		transcrip	ption factors	220
	5.5.3	Redox re	egulation in yeast	221
	5.5.4	Redox re	egulation in animals: kinases and phosphatases	221
		5.5.4.1	What is it about?	221
			Protein kinases	221
			How do RS modulate signalling?	224
		5.5.4.4	Reactive species as mediators of the actions of	
			signalling molecules?	225
	5.5.5	Mitocho	ondrial communication by ROS?	225
	5.5.6	$NF-\kappa B$		226
			ROS or no ROS?	228
	5.5.7	AP-1		229
	5.5.8	The anti	ioxidant response element and Nrf2	229
	5.5.9	Co-oper	ration and combination	230
	5.5.10	Physiolo	ogical significance of redox regulation in animals	230
	5.5.11	Lessons	from an amoeba	231
5.6	Heat-s	shock and	d related 'stress-induced' proteins; cross-talk with ROS	231
5.7	Cytok	ines, hor	mones, and redox-regulation of the organism	234
	5.7.1	TNF-α		235
	5.7.2	Interleu	kins	235
	5.7.3	Transfor	rming growth factors β	236
			te-phase response	236
5.8	Mecha	nisms of	f damage to cellular targets by oxidative stress: DNA	236
		DNA str		236
	5.8.2	Damage	e to DNA by reactive species	238
		_	Hydroxyl radical	238
		5.8.2.2	Hydrogen peroxide and the role of transition metals	240
		5.8.2.3	Use of iron and hydrogen peroxide for oxidative	
			'footprinting'	244
			Singlet oxygen	244
			Carbonate radical anion	244
			Peroxyl and alkoxyl radicals	244
			Hypohalous acids	244
		5.8.2.8		244
			Reactive nitrogen species	244
			Ultraviolet light	245
	E O O		Oxidation of oxidation products	245
E 0	5.8.3		e to mitochondrial and chloroplast DNA	245
5.9			of damage to DNA and RNA by reactive species	245
		Mutatio		245
			g protein synthesis	246
			prporation	246
			s in gene expression	247
- 10		Having		247
5.10			ative DNA damage	247
			ng the chemical change	247
	5.10.2	Don't le	et it in: sanitization of the nucleotide pool	248
			ut: excision repair	248
			ch repair	250
	5.10.5	Kepair (of 8-hydroxyguanine (8OHG)	250

CONTENT	S	xvii

		Repair of double-strand breaks	250
		Mitochondrial DNA repair	250
	5.10.8	Is DNA repair important?	251
		5.10.8.1 Bacteria to mice	251
		5.10.8.2 Mice to men	251
		Polymorphisms in genes encoding antioxidant and repair enzymes	252
		Dealing with oxidative RNA damage	252
5.11		nisms of damage to cellular targets by oxidative stress: lipid	
	peroxic		252
	5.11.1	A history of peroxidation: from oils and textiles to breast	
		implants, fish meal, and plastic wrapping	252
	5.11.2	Targets of attack: membrane lipids and proteins	253
		5.11.2.1 What's in a membrane?	253
		5.11.2.2 Membrane structure	253
		Targets of attack: dietary lipids and lipoproteins	256
		How does lipid peroxidation begin?	256
	5.11.5	Propagation of lipid peroxidation	257
	5.11.6	Transition metals and lipid peroxidation	259
		5.11.6.1 Iron	259
		5.11.6.2 Copper 5.11.6.3 Other metals	263 263
	F 11 F		264
		Microsomal lipid peroxidation	204
	5.11.8	Acceleration of lipid peroxidation by species other than	264
		oxygen radicals	264
		5.11.8.1 Singlet oxygen 5.11.8.2 Reactive halogen species	265
		5.11.8.3 Adding organic peroxides or azo initiators	265
5 12	I inid n	peroxidation products: bad, good, or indifferent?	265
O.1 2		General effects	265
		Lipid hydroperoxides (ROOH)	266
		Isoprostanes, isoketals, and cyclopentenone compounds	267
		Cholesterol oxidation products (COPs)	268
	5.12.5	Decomposition products of lipid peroxides: yet more	
	0.12.0	bioactive products	269
		5.12.5.1 Ethane and pentane	269
		5.12.5.2 Malondialdehyde	270
		5.12.5.3 4-Hydroxy-2-trans-nonenal (HNE), acrolein, and	
		other unsaturated aldehydes	270
	5.12.6	Peroxidation of other molecules	274
	5.12.7	Repairing oxidized lipids?	274
		Lipids as antioxidants?	274
		5.12.8.1 The plasmalogens	274
5.13	Mechai	nisms of damage to cellular targets by oxidative stress:	
		damage	275
	5.13.1	Does protein damage matter?	275
	5.13.2	How does protein damage occur?	275
	5.13.3	Chemistry of protein damage	276
	5.13.4	Damage to specific amino acid residues	276
		5 13 4 1 Cysteine and methionine	276

		5.13.4.2 Histidine	277
		5.13.4.3 Proline, lysine, and arginine	277
		5.13.4.4 Tryptophan	277
		5.13.4.5 Tyrosine and phenylalanine	277
		5.13.4.6 Valine, leucine, and other aliphatic amino acids	277
		5.13.4.7 Hydroxy-amino acids (serine and threonine)	277
		ng with oxidative protein damage	280
	5.14.1	Repair of methionine residues	280
		5.14.1.1 A methionine cycle?	280
		Removal: spatial segregation	280
	5.14.3	Removal: proteolysis	280
		5.14.3.1 Autophagy	280
		5.14.3.2 Lon proteinase and the proteasome	281
		5.14.3.3 Any role for ubiquitin?	282
		5.14.3.4 Clogging up the proteasome	282
	5.15 Sumn	nary: oxidative stress and cell injury	283
6	Measurem	ent of reactive species	284
	6.1 Introd	duction	284
	6.1.1	Trapping	284
	6.1.2	Fingerprinting: the biomarker concept	284
	6.2 ESR a	and spin trapping	285
	6.2.1	What is ESR?	285
	6.2.2	Measurement of oxygen	287
	6.2.3	Spin trapping	287
		DMPO, DEPMO, and PBN	289
	6.2.5	Ex vivo trapping in humans	290
		Cautions in the use of spin traps	291
		Trapping thiyl radicals	292
	6.2.8		293
		r trapping methods, as exemplified by hydroxyl radical	
	trapp		293
	6.3.1	Aromatic hydroxylation	293
		6.3.1.1 Aromatic hydroxylation in vivo	294
	6.3.2	Use of hydroxyl radical scavengers	296
	6.3.3	The deoxyribose assay	296
		Measurement of rate constants for OH• reactions	296
	6.3.5	Other trapping methods for hydroxyl radical	299
		ction of superoxide	29 9
	6.4.1	•	300
	6.4.2		300
	6.4.3		300
	6.4.4	•	300
	6.5 Detec	ction of nitric oxide	302
		Calibration	302
		ction of peroxynitrite	302
		Probes for peroxynitrite	302
		Nitration assays	302
		6.6.2.1 Specificity for peroxynitrite?	306
		6.6.2.2 Accuracy of nitration assays?	306

6.7	Detecti	on of reactive halogen species	307	
6.8	Detection of singlet oxygen			
		Direct detection	307	
	6.8.2	Use of scavengers and traps	307	
	6.8.3	Deuterium oxide (D ₂ O)	309	
6.9	Studies	of 'generalized' light emission (luminescence/fluorescence)	309	
6.10	Change	es in gene expression: ROS biosensors?	309	
6.11	Detecti	on of hydrogen peroxide	310	
	6.11.1	Fluorescent 'probes' for H ₂ O ₂	310	
6.12	Other r	nethods to measure reactive species in cultured cells: be wary		
	of DCF	HDA!	316	
	6.12.1	2',7'-Dichlorodihydrofluorescein diacetate	316	
	6.12.2	Dihydrorhodamine 123 (DHR)	320	
	6.12.3	Dihydroethidium	320	
	6.12.4	Luminol, lucigenin, and L-012	321	
		Alternative luminescent probes for superoxide	321	
	6.12.6	Effects of reactive species on other probes	321	
6.13	Biomar	kers: oxidation of bilirubin and of urate	321	
6.14	Biomar	kers: oxidative DNA damage	322	
	6.14.1	DNA damage: why measure it?	322	
	6.14.2	Characterizing DNA damage: what to measure?	322	
	6.14.3	Characterizing DNA damage: how to measure it	323	
	6.14.4	Steady-state damage: the artefact problem	325	
	6.14.5	Overcoming the artefact	325	
		6.14.5.1 The comet assay	326	
	6.14.6	Interpreting the results: measure DNA levels or urinary		
		excretion? What do the levels mean?	326	
	6.14.7	Reactive nitrogen and chlorine species	328	
	6.14.8	Gene-specific oxidative damage	328	
	6.14.9	RNA oxidation	328	
	6.14.10	DNA-aldehyde adducts	328	
6.15	Biomar	kers of lipid peroxidation	329	
	6.15.1	Why measure lipid peroxidation?	329	
	6.15.2	Measurement of peroxidation and peroxidizability	329	
	6.15.3	Loss of substrates	329	
	6.15.4	Measurement of intermediates	330	
		6.15.4.1 Radicals	330	
		6.15.4.2 Diene conjugates	330	
	6.15.5	Measurement of end-products: peroxides	331	
	6.15.6	Measurement of end-products: isoprostanes (IsoPs),		
		isofurans (IsoFs), and isoketals (IsoKs)	331	
	6.15.7	Measurement of end products: aldehydes	335	
	6.15.8	The thiobarbituric acid (TBA) assay	337	
		6.15.8.1 Problem 1: most TBARS (TBA-reactive substances)		
		are generated during the assay	337	
		6.15.8.2 Problem 2: false chromogens	338	
		6.15.8.3 Problem 3: real chromogens but not from lipids	338	
		6.15.8.4 Urinary TBARS	338 338	
		6.15.8.5 Should the TBA assay be abandoned?	<i>33</i> 0	

7.8		ey to life: photosynthetic oxygen production	369
	7.8.1	Trapping of light energy	370
	7.8.2	The water splitting mechanism: a radical process and the	
		reason for this book	374
	7.8.3	What problems do green leaves face?	374
	7.8.4	Solutions: minimizing the problem	377
	7.8.5	The xanthophyll cycle	378
	7.8.6	Solutions: antioxidant defence enzymes control, but do not	
		eliminate, reactive species	379
		7.8.6.1 Superoxide dismutases	379
		7.8.6.2 Removal of hydrogen peroxide	379
		7.8.6.3 Redox signalling in plants	380
	7.8.7	9	380
		Plant tocopherols	381
		Solutions: sequestering transition metal ions	381
		Solutions: repair and replacement	382
		The special case of the root nodule	382
7.9		s as targets for stress and toxins	382
	7.9.1	Inhibition of electron transport and carotenoid synthesis	382
	7.9.2	Bipyridyl herbicides	383
		7.9.2.1 Redox cycling	383
	700	7.9.2.2 Evidence that ROS are important in paraquat toxicity	384
	7.9.3		20.4
	704	nitrogen dioxide)	384
		Environmental stress: heat, cold, and drought	385
	7.9.5	0 0 1	20/
7 10	Tril.	plant-dependent oxidative stress?	386
7.10	The ey		386
	7.10.1	What problems does the eye face?	387
	7100	7.10.1.1 Macular degeneration, lipofuscin, and singlet oxygen	388 390
	7.10.2	Protecting the eye	390 390
		7.10.2.1 Screening, prevention, and crying 7.10.2.2 Antioxidants in the eye	391
		7.10.2.3 Sequestration of metal ions	392
		7.10.2.4 Repair of damage	392
	7.10.3	Toxins, inflammation and the eye	393
		Ocular carotenoids: a Chinese herb good for the eyes?	393
		Antioxidants, cataract and macular degeneration	393
7.11		duction and oxidative stress	394
	_	Pre-conception: spermatozoa face problems	394
		Spermatozoa: the solutions	395
		Spermatozoa as targets for toxins	395
		The female story	395
		Problems of the embryo	396
		Problems of pregnancy: normal and abnormal O ₂ levels	397
	-	7.11.6.1 Endometriosis	398
	7.11.7	The embryo/foetus as a target for toxins	398
	7.11.8	· ·	399
		7.11.8.1 A cold hyperoxic shock	399

			7.11.8.2 Prematurity	399
			7.11.8.3 Antioxidants and babies	400
			/ : 11:0:1	400
			7.11.0.0 1 diciticidi italianon	401
			7.11.0.0 TH:000.1140-100/1 C 100-100-100-100-100-100-100-100-100-	401
	7.12	The ea	**	401
	7.13	The sk	in	402
		7.13.1	What problems does the skin face?	402
			7.13.1.1 Photosensitization	403
			7.13.1.2 Ultraviolet light	404
			7.13.1.3 Inflammation	405
			7.13.1.4 Air pollutants	406
			Protecting the skin	406
			Wounds and burns	407
	7.14	_	al muscle: is exercise a cause of or a protection against	400
			tive stress?	408
		7.14.1	Exercise, lack of exercise and oxidative damage	408
			7.14.1.1 Antioxidant supplements and exercise	409
		7.14.2	Exercise, health and free radicals	410
8	Read	tive sp	pecies can be useful: some more examples	411
		_	•	411
			luction	411
	8.2		al enzymes: ribonucleotide reductase and its colleagues	411
			The enzyme mechanism Inhibitors of RNRs	411
				413
			Class III ribonucleotide reductases and other 'sons of SAM' enzymes	413
		8.2.4	Class II ribonucleotide reductases and other cobalamin	412
	0.0	D	radical enzymes	413
	8.3	-	vate-formate lyase: a similar mechanism	413
	0.4	8.3.1	Pyruvate-ferredoxin oxidoreductase ted oxidases	413 414
	8.4			
			Galactose oxidase	414
	0.5		Indoleamine and tryptophan dioxygenases	415
	8.5		ll peroxidases	415
			An 'antimolestation' spray	415
			Sea urchins and brine shrimp	415
		8.5.3	Making and degrading lignin 8.5.3.1 Making lignin	417 417
			8.5.3.1 Making lignin 8.5.3.2 Breaking lignin down	419
			8.5.3.3 A role for hydroxyl radical?	420
	86	Lioht	production	420
	0.0	8.6.1	•	
	87		Ocytosis	421
	0.7	8.7.1	Setting the scene	421
		8.7.2	Neutrophils, monocytes, and macrophages	421
		8.7.3	Phagocyte recruitment, adhesion, activation, and disappearance	427
		0.7.0	8.7.3.1 Getting to the right place	427
			8.7.3.2 What must neutrophils do?	430

	874	How do	phagocytes kill?	431
	0.7.1		Phagocytes show a respiratory burst	431
			Priming of the respiratory burst	432
			The respiratory burst makes superoxide	432
			Superoxide is required to kill some bacteria	433
			So how does superoxide kill? Via H ₂ O ₂ ?	434
			Via hydroxyl radical?	435
			Via singlet O ₂ ?	435
		8.7.4.8	Via peroxynitrite?	435
		8.7.4.9	By facilitating the action of other microbicidal agents?	435
			Interference with quorum sensing	436
			By NETs formation	436
			Fitting it together	436
	8.7.5		eroxidase (MPO)	436
			Hypochlorous acid production	436
			The MPO reaction mechanism	438
		8.7.5.3	Singlet O ₂ from MPO?	438
			The enigma of MPO	439
			Nitration by MPO	439
			Peroxidasins Other defension managidases	439 440
			Other defensive peroxidases	440 440
0.0	Other		Fitting it together (part 2) rtes: similar but different	440
			ocyte-derived reactive species (RS) do to the host?	441
0.9				441
			llular RS: what can they do?	442
		Signalli	<u> </u>	442
		•	e to the phagocyte	443
		-	noters or suppressors of chronic inflammation?	444
			poes it all mean? Are RS both pro- and anti-inflammatory?	444
0.10			ng the defences: bacterial and fungal avoidance strategies	445
8.10			ses in other cell types	447
		-	trointestinal and respiratory tracts	447
	8.10.2		hormone synthesis Iodide as an antioxidant	448
	0.10.2			448
		C. elegar		448
			essel walls and the regulation of blood pressure	449
		Lympho	•	449
			unction and oxygen sensing	450
		Platelets		450 451
			rmation and degradation	451 451
0.11			edox systems	451 451
8.11			tive species for defence and regulation	451 451
		Plant N		
			persensitive response	452
		-	poxygenases	453
			rry response and oxylipin signalling	455 455
			ation and senescence	455
8.12		_	genases and cyclooxygenases: stereospecific lipid	450
	-	idation	CPV VPA 1	456
	8.12.1	Oxidation	on of PUFAs by enzymes	456

		8.12.2	Eicosan	oids: prostaglandins and leukotrienes	456
		8.12.3	Prostag	landins and thromboxanes	456
		8.12.4	Prostag	landin synthesis	458
		8.12.5	Regulat	tion by 'peroxide tone'	458
		8.12.6	Prostag	landins from isoprostanes? Cross-talk of the systems	460
		8.12.7	Levugla	andins	460
		8.12.8	Prostac	yclins and thromboxanes	460
		8.12.9	Leukot	rienes and other lipoxygenase products	462
9	Read	tive sp	oecies ca	n be poisonous: their role in toxicology	463
	9.1	Introd	luction		463
		9.1.1	What is	s toxicology?	463
		9.1.2	Princip	les of toxin metabolism	463
		9.1.3	How ca	n reactive species contribute to toxicity?	464
	9.2	Carbo	n tetracl	nloride	465
		9.2.1	Carbon	tetrachloride synthesis: a free-radical chain reaction	465
		9.2.2	Toxicity	of CCl ₄	466
		9.2.3	How do	oes CCl ₄ cause damage?	467
	9.3	Other	halogen	ated hydrocarbons	468
		9.3.1	Chlorof	form and bromotrichloromethane	469
				nlorophenol and related environmental pollutants	469
	9.4			toxins: bipyridyl herbicides	470
			-	y to bacteria	470
				y to animals	470
			-	paraquat toxic to the lung?	470
	9.5			toxins: diphenols, quinones, and related molecules	473
				tion with O ₂ and superoxide	471
				tion with metals	471
				nisms of toxicity	473
				ne reductase	474
				ol oestrogens	475
				uted dihydroxyphenylalanines and 'manganese madness'	475
				oxicity of 6-hydroxydopamine	475
				e and its derivatives	476
	0.6			il syndrome and a new Society	476
				agents: toxins derived from Pseudomonas aeruginosa	477
	9.7		togenic (•	477
			Alloxar		477
	0.0	9.7.2	Strepto	zotocin	478
	9.0	Alcoh			479
		9.8.1	Ethanol 9.8.1.1	l Ethanol metabolism and CYP2E1	479
				Ethanol toxicity	480
				Does ethanol increase RS formation?	481 482
				How does ethanol cause oxidative stress?	482
				Does oxidative damage explain ethanol toxicity?	482
				Other liver diseases	483
				Therapeutic options?	483
		9.8.2		cohol and acrolein	483
	99	Other	-	onal druos	18/

9.10	Paracet	amol (acetaminophen) and naphthalene, glutathione-	
	depleti	ng toxins	484
9.11	Chlorir	ne gas	487
9.12	Air pol	lutants	487
	9.12.1	Ozone	487
	9.12.2	Nitrogen dioxide	488
		9.12.2.1 Nitrogen dioxide as a free radical	488
		9.12.2.2 Antioxidants and nitrogen dioxide	489
	9.12.3	Sulphur dioxide	489
9.13	Toxicity	of mixtures: 'real' air pollution, cigarette smoke, and other	
	toxic sr	nokes	49 0
	9.13.1	Chemistry of tobacco smoke	491
	9.13.2	Mechanisms of damage by cigarette smoke	492
	9.13.3	How does the respiratory tract defend itself?	493
	9.13.4	Adaptation	494
	9.13.5	Environmental tobacco smoke (ETS)	494
	9.13.6	Other tobacco usage	494
	9.13.7	Other smokes, fumes, and dusts	495
9.14	Diesel e	exhaust and airborne particulates	495
	9.14.1	Nanoparticles	496
9.15	Toxicity	y of asbestos and silica	496
		y of metals	497
	-	Cause or consequence?	497
		Arsenic	497
	9.16.3	Nickel	498
	9.16.4	Chromium	498
	9.16.5	Cobalt	499
	9.16.6	Cadmium	499
		Mercury	499
	9.16.8	•	500
	9.16.9	Vanadium	500
	9.16.10	Titanium	500
	9.16.11	Aluminium	501
	9.16.12	Zinc	501
9.17	Antibio	otics	502
		Tetracyclines as pro- and antioxidants	502
		Quinone antibiotics	502
	9.17.3	Aminoglycoside nephrotoxicity	503
9.18	Stress	1 ,	503
		nd azo compounds	505
		Nitro radicals and redox cycling	505
		Further reduction of nitro radicals	505
	9.19.3		505
9.20		g radiation	507
> 0	9.20.1	•	507
	/ · · · · · · ·	9.20.1.1 A role for superoxide?	508
	9.20.2		509
		Hypoxic cell sensitizers	509
		Food irradiation	509
9.21		ary and conclusion	510
		,	

10 Reacti	ve speci	ies in disease: friends or foes?	511
10.1	Setting t	the scene	511
	_	cidative stress matter?	511
		Establishing importance	514
10.3		sclerosis	516
20.0		What is atherosclerosis?	516
		Predictors of atherosclerosis	517
		What initiates atherosclerosis?	51 7
		LDL oxidation and the foam cell	519
		Mechanisms of LDL oxidation	520
	20:2:2	10.3.5.1 Reactive nitrogen and chlorine species	521
		10.3.5.2 Metal ions	521
		10.3.5.3 Lipoxygenases	522
		10.3.5.4 Summing it up: which pro-oxidant(s) oxidize	
		LDL in vivo?	523
	10.3.6	Other aspects of the involvement of RS in atherosclerosis	523
	10.3.7	Does evidence support the 'oxidative modification	
		hypothesis' of atherosclerosis?	523
	10.3.8	Chemistry of LDL oxidation: is in vitro LDL oxidation a	
		relevant model?	525
		10.3.8.1 The role of 'seeding peroxides'	526
		10.3.8.2 Antioxidants and LDL oxidation	526
		10.3.8.3 Pro-oxidant effects of antioxidants	528
		10.3.8.4 Relevance of the model	529
		10.3.8.5 An artefact of eating?	529
		10.3.8.6 Subclasses of LDL	530
		The role of high-density lipoproteins (HDL)	530
		Lipoprotein(a)	531
		Unanswered questions	531
		y and its opposite	531
10.5	Diabet		532
		Can oxidative stress cause diabetes?	533
		ROS in normal insulin function and insulin resistance	533
		Oxidative stress in diabetic patients	534
		How does the oxidative stress originate?	535
	10.5.5	Non-enzymatic glycation and glycoxidation	535
		10.5.5.1 Reversing AGEing?	538
	10.5.6	9	538
	10.5.7	A summary: how important is oxidative stress in diabetes?	539
		10.5.7.1 Do antioxidant supplements help diabetic patients?	539
10.6		mia-reperfusion	539
	10.6.1	, ,	540
	10.6.2		54 1
	10.6.3	70	54 1
	10.6.4	70	542
		10.6.4.1 The phenomenon	542
		10.6.4.2 Importance of the model used	543
		10.6.4.3 The relevance of xanthine oxidase	544 544
		10.0.4.4 The rejevance of transition metals	744

^	Λ	ΝI	TE	N.	T٢	vvviii
- (11	N	1 -	N	1.	YYVII

		10.6.4.5 Nitric oxide: good or bad?	545
		10.6.4.6 Heart failure	545
		10.6.4.7 Clinical relevance	545
		10.6.4.8 Cardiopulmonary bypass	546
		Angioplasty, restenosis, and bypass grafting	546
	10.6.6	Ischaemic preconditioning	546
	10.6.7	Shock- and sepsis-related ischaemia-reoxygenation	547
		10.6.7.1 Aneurysm	548
	10.6.8	The eye	548
	10.6.9	Chemical ischaemia-reperfusion: carbon monoxide poisoning	549
	10.6.10	Cold and freezing injury: the enigma of biopsies	549
	10.6.11	Sleep apnoea	549
10.7	Organ	preservation, transplantation, and reattachment of severed tissues	550
	10.7.1	Heart	550
	10.7.2	Kidney	550
		Liver and pancreas	551
		Limbs, digits, and sex organs	551
		Organ preservation fluids	552
		Other examples	552
10.8		ransplants, shock, and ARDS	553
	10.8.1	Oxidative stress in ARDS: does it occur and does it matter?	554
10.9	Cystic		554
10.7	-	Cystic fibrosis and carotenoids	555
10 10		utoimmune diseases	556
10.10		Adverse drug reactions	557
		Are RS important mediators of autoimmune diseases?	557
	10.10.2	10.10.2.1 Artefacts to watch for: contamination of	007
		commercial antioxidants and oxidation on sample	
		storage	557
		10.10.2.2 Periodontal disease: a missed opportunity?	558
10.11	Rheum	atoid arthritis	558
		The normal joint	558
		The RA joint	558
		How does increased oxidative damage arise in RA?	560
		Does oxidative damage matter in RA?	561
		Drugs to treat RA: antioxidant, pro-oxidant, or neither?	562
		Iron and rheumatoid arthritis	565
10.12		natory bowel disease	565
10.12		The salazines	566
		Coeliac disease	566
10 13		nation of other parts of the gastrointestinal tract	567
10.15		Pancreas	567
			567
		Oesophagus and stomach	567
10.14	10.13.3		
10.14		ive stress and cancer: a complex relationship	568 549
		The cell cycle	568
		Tumours	569
	10.14.3	Carcinogenesis	570
		10.14.3.1 Initiation	570
		10.14.3.2 Tumour promoters	571 572
		10.14.3.3 Progression	312

10.14.4	Genes and	cancer	572
	10.14.4.1	Oncogenes	572
	10.14.4.2	Tumour suppressor genes	573
	10.14.4.3	Stability genes	574
		Angiogenesis and cancer	574
10.14.5		pecies and carcinogenesis: basic concepts	574
	p53 and R		575
10.14.7	-	n antioxidant defences in cancer	576
10.14.8	•		577
10.14.0		DNA damage by RS	577
		Is there increased oxidative DNA damage in cancer?	577
		A role for reactive nitrogen and chlorine species	579
		Epigenetics, cell proliferation, and HIF-1α	579
		Intercellular communication	581
		Suppressing apoptosis	581
		Metastasis and angiogenesis	581
		Affecting stem cells	581
10.14.9		d cachexia	582
· -		nant cells truly under oxidative stress?	582
		aflammation and cancer: a close link but is it	
10.14.11			582
101416		active species?	583
		metals and cancer	584
10.15 Carcino			
10.15.1		en metabolism	584
		Carcinogens can make RS	584
10.15.2	_	ens and oxidative DNA damage	587
		Peroxisome proliferators	587
		enic reactive nitrogen species?	588
10.16 Cancer	chemother	apy and reactive oxygen species	588
10.16.1	Oxidative	e stress and chemotherapy	590
10.16.2		acyclines and other quinones	591
	10.16.2.1	Mechanisms of cardiotoxicity: redox cycling	
		and others	592
	10.16.2.2	Iron and anthracyclines	592
10.16.3	Bleomyci	n	593
	10.16.3.1	Side-effects of bleomycin	594
10.16.4	Should ca	ancer patients consume antioxidants?	595
10.17 Oxidat	ive stress ar	nd disorders of the nervous system: setting the scene	595
10.17.1	Introduct	ion to the brain	595
10.17.2	Energy m	netabolism in the brain	598
10.17.3	Q3	te, calcium, and nitric oxide	599
	Excitotox		599
10.17.5		uld the brain be prone to oxidative stress? ROS	
10.11.10	,	useful and deleterious	600
10.17.6		ant defences in the brain	603
10.17.0	10.17.6.1	Keeping oxygen low	603
	10.17.6.1	Superoxide dismutases and peroxide-removing	000
	10.17.0.2	enzymes	603
	10.17.6.3	Glutathione and ergothioneine	603
	10.17.6.4		604
	10.17.6.5	Ascorbate	604
	10.17.0.0	AUCULUM	· ·

_	\sim	K I '	TF	KI.	r c	
ı	u	IVI	TΕ	IVI	1.	XXIX

		10.17.6.6 Vitamin E	604
		10.17.6.7 Coenzyme Q	605
		10.17.6.8 Histidine-containing dipeptides	605
		10.17.6.9 Plasmalogens	605
		10.17.6.10 Carotenoids and flavonoids	605
		10.17.6.11 Metal-binding and related protective proteins	605
		10.17.6.12 Repair of oxidative damage	606
		10.17.6.13 Defence of the blood-brain barrier	606
10.18	Oxidativ	ve stress in ischaemia, inflammation, and trauma in the	
	nervous		606
	10.18.1	Inflammation: a common feature	606
	10.18.2	Multiple sclerosis	607
	10.18.3	Brain injury: stroke	607
		10.18.3.1 Mediators of damage	608
		10.18.3.2 Therapeutic interventions?	610
	10.18.4	Traumatic injury	611
10.19	Oxidativ	ve stress and neurodegenerative diseases: some general concepts	611
		The role of iron	614
	10.19.2	Are aggregates toxic?	615
10.20		on disease	615
	10.20.1	Genetics or environment?	616
	10.20.2	Treatment	616
		Environmental toxins and PD	617
		The vicious cycle: proteasomal dysfunction, oxidative	
		stress, and mitochondrial defects in PD	620
		10.20.4.1 Early or late?	621
	10.20.5	•	621
10.21		er disease	622
		Definition and pathology	622
		Genetics of AD	624
		Mechanisms of neurodegeneration	625
		Oxidative damage in AD: cause or consequence?	627
		Impairment of proteolysis	628
		An old red herring: aluminium in AD	628
		Diet, lifestyle, and AD	628
	10.21.8	Other amyloid diseases	629
		Prion diseases	629
10.22		ophic lateral sclerosis (ALS)	630
10.22	10.22.1	Familial ALS (FALS) and superoxide dismutase	631
	10.22.1		632
	10.22.2	Oxidative damage and excitotoxicity in ALS 10.22.2.1 Therapies	632
10.23	Other di	seases of the brain and nervous system	633
10.20		Friedreich ataxia	633
		Huntington disease	633
	10.23.2		635
10.24		Neuronal ceroid lipofuscinoses	635
		re atrace and vival infections	636
10.23		re stress and viral infections	637
	10.25.1	Reactive species, antioxidants, and HIV	637
	10.25.2	10.25.1.1 Changes in glutathione?	
	10.25.2	Redox regulation of viral expression	638
	10.25.3	Side-effects of therapy	638

11 Ageing, nu	trition, disease, and therapy: a role for antioxidants?	639
11.1 Intro		639
	ories of ageing; the basics	639
	1 General principles	639
	What features of ageing must theories explain?	640
11.2.	11.2.2.1 Caloric restriction (CR)	640
	11.2.2.2 Obesity, oxidative stress, and CR	64 0
11.3 Wha	t theories of ageing exist?	641
	1 Do genes influence ageing? The story of C. elegans	641
	11.3.1.1 What about mammals?	642
11.3.	2 Genes and human longevity	645
11.3	3 Premature human ageing	645
11.3	4 Mechanisms of caloric restriction; learning from yeast	646
11.3	5 Telomeres and cellular senescence	647
	11.3.5.1 An artefact of cell culture?	648
11.4 Oxio	lative damage: a link between the theories of ageing?	649
11.4	1 Introduction to the free-radical theory of ageing	649
11.4	2 Do ROS production and oxidative damage increase with age?	653
	11.4.2.1 Be cautious with global biomarkers	654
11.4	3 Is the rise in oxidative damage due to failure of antioxidant	
	protection with age?	654
11.4	4 Is there a failure to repair oxidative damage with age?	655
11.4	5 Testing the free-radical theory of ageing: altering	
	antioxidant levels	655
	11.4.5.1 Transgenic organisms: a confusing picture	656
11.4	.6 'Rapidly ageing' rodents	658
11.4	.7 Lipofuscin and ceroid; fluorescent 'red herrings'?	658
11.4	.8 Is the oxidative damage theory of ageing ageing badly?	659
	.9 How to live a long time	659
11.4	.10 Iron, ageing, and disease: another gender gap	660
11.5 Ant	ioxidants to treat disease	660
11.5	.1 Therapeutic antioxidants	661
11.5	.2 Approaches to antioxidant characterization	663
11.5	· · · · · · · · · · · · · · · · · · ·	663
	11.5.3.1 Viral vectors	665
11.5	.4 SOD mimetics and related redox-active molecules	666
11.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	669
11.5		672
11.5	, ,	6 7 3
11.5		680
11.5	*	680
	11.5.9.1 Glutathione	681
	11.5.9.2 N-Acetylcysteine	681
	11.5.9.3 Other thiols	682
	11.5.9.4 Thiols as radioprotectors	682
	6.10 Glutathione peroxidase 'mimetics'	683
	.11 'Pro-oxidants' and Nrf2 activators	683
11.5	5.12 Mitochondrially targeted antioxidants	684

			CONTENTS	XXX
	11 6 Iron 21	nd copper ion chelators		686
		Desferrioxamine		686
				692
		Other iron-chelating agents		
		tors of the generation of reactive species		693
	11.7.1	, ,		693
	11.7.2	Myeloperoxidase inhibitors		694
	11.7.3	Inhibitors of phagocyte action		694
	11.7.4	NADPH oxidase inhibitors		694
11.8 Agents to watch		s to watch		695
,	Appendix: Some	e basic chemistry		697
	A1 Atomic structure			697
	A2 Bonding between atoms			702
	A2.1	Ionic bonding		702
	A2.2	Covalent bonding		702
	A2.3			703
	A2.4	Hydrocarbons and electron delocalization		704
		and molarity		705
	A4 pH an	•		705
	1	• "		
F	References			707
	ndex			823