Contents

Contributors x	iii
Forewordx	⁄ii
Part 1: Direct Microbial Conversion of Biomass to Advanced Biofuels	1
Chapter 1: Feedstock Engineering and Biomass Pretreatments: New Views	
for a Greener Biofuels Process	3
Feedstock Engineering Aiming to Provide More Pretreatable	
and Digestable Biomass	3
In Planta Engineering for Reduced Recalcitrance Traits	5
Mild and Green Pretreatments of Biomass for Lower Toxicity	
in Lignocellulosic Hydrolysates and Solid Residues	7
A New Concept of Tailored Chemoprocessing for Individual Microorganisms	8
Building Unified Chemobiomass Databases and Libraries of Chemicals	
Conclusions 1	
Acknowledgments 1	
References 1	1
Chapter 2: Hydrocarbon Biosynthesis in Microorganisms	3
Introduction1	3
Microbiology and Hydrocarbon Products 1	4
Enzymes and Mechanisms of Hydrocarbon Biosynthesis 1	5
Ole-Catalyzed Synthesis of Long-Chain Olefins1	5
The Chemistry of the Ole Gene Products1	8
OleA	9
OleD2	4
OleC	5
OleB	;5
Aldehyde Deformylating Oxygenase (Formerly Decarbonylase)	6
Alpha Olefins via Cytochrome P450	7
Alpha Olefins via a Polyketide-Type Pathway2	8
Conclusions	.8
References 2	9

Chapter 3: Perspectives on Process Analysis for Advanced Biofuel Production	.33
Introduction	. 33
Overview of Process Analysis	34
Aerobic Bioprocess	. 39
Process Design Details	39
Aerobic Bioprocess Discussion	. 46
Anaerobic Bioprocess	. 48
Process Design Details	48
Anaerobic Bioprocess Discussion	50
Consolidated Bioprocessing	. 52
Process Design Details	52
CBP Discussion	53
Data Gaps, Uncertainties, and Research Needs	. 55
Conclusion	. 56
Acknowledgment	. 57
References	.57
Part 2: Biomass Structure and Recalcitrance	61
Fuit 2. Diomass Structure and Reculcin and Construction	•••
Chapter 4: Tailoring Plant Cell Wall Composition and Architecture	
for Conversion to Liquid Hydrocarbon Biofuels	.63
Biomass Feedstocks are Already an Abundant Resource	
Chemical Structure and Physical Properties of Lignocellulosic Biomass	
Biochemical, Chemical and Pyrolytic Conversion Pathways Provide	
Alternative Routes to Fuels	. 66
Tailoring Biomass for Downstream Conversion Processes	
Adding Value to Plant Biomass Through Modification of Lignin	
Redesigning Cellulose Microfibrils for Ease of Disassembly	
Modification of Accessory Proteins for Altering Cellulose Microfibril Structure	
Modifying Xylan Composition and Architecture in the Interstitial Space	
Modulating Gene Expression Networks to Alter Lignin and Carbohydrate	
Composition and Architecture	
Conclusions	
References	
Chapter 5: Processive Cellulases	
Acknowledgments	
References	88
Chapter 6: Bacterial AA10 Lytic Polysaccharide Monooxygenases Enhance	
the Hydrolytic Degradation of Recalcitrant Substrates	91
Substrate Recalcitrance and Cellulase Mixtures	01
Lytic Polysaccharide Monooxygenases	91
Conclusion	
Acknowledgments	100
References	107
	107

Chapter 7: New Insights into Microbial Strategies for Biomass Conversion	111
Introduction	
Distinct Enzyme Synergy Paradigms in Cellulolytic Microorganisms	
Free Enzyme Systems	
Self-Assembling, Highly Aggregated Enzyme Systems	
Multifunctional Enzyme Systems	
New Cellulose Digestion Strategies Promoting Interspecies Synergism	118
Cellulose Deconstruction by Cellulosomes: An Efficient and	
Complementary Deconstruction Mechanism.	119
The Hyperthermophilic Cellulase from Caldicellulosiruptor bescii CelA	
Degrades Cellulose by Several Complementary Mechanisms	120
Future Perspective	
Acknowledgments	
References	
Chapter 8: New Paradigms for Engineering Plant Cell Wall Degrading Enzymes .	129
Introduction	
Engineering of Single Enzymes	
Cellulosome Engineering	
Mini-Cellulosomes	
Designer Cellulosomes	
Cellulosome-Inspired Complexes	
Multifunctional Enzyme Design	
Cell Wall-Anchored Paradigms	
Reflections and Perspectives	
Acknowledgments	
References	
Part 3: Fuels from Fungi and Yeast	. 151
Chapter 9: Expression of Fungal Hydrolases in Saccharomyces cerevisiae	153
Introduction	
Cellulose and Hemicellulose Structure and Hydrolysis	
Expression of Fungal Cellulases in Saccharomyces cerevisiae	
Expression of Yulan Hydrolases in Saccharomyces cerevisiae	
Expression of Mannan Hydrolases in Saccharomyces cerevisiae	
Discussion	
References	
	109
Chapter 10: Identification of Genetic Targets to Improve Lignocellulosic	
Hydrocarbon Production in Trichoderma reesei Using Public	
Genomic and Transcriptomic Datasets	
Background	177
Materials and Methods	179
Trichoderma reesei Protein Function Annotation and Pathway Reconstruction	179
Trichoderma reesei Microarray and RNA Sequencing Dataset Collection	
and Transcriptomic Analyses	179

Descrite and Discussions	181
Results and Discussions Identify Target Genes for Metabolic Engineering by Genomic Metabolic	
Identify larget Genes for Metabolic Engineering by Generine Metabolic	181
Pathway Analysis Identify Target Genes for Metabolic Engineering by Transcriptomic Analysis	
Identify Target Genes for Metabolic Engineering by Maiscriptonic Analysis	188
Investigate Transcriptional Regulators	100
Identify Promoters with Different Strength for Metabolic Engineering	101
Conclusions and Perspectives	191
Acknowledgment	192
References	192
Chapter 11: Production of Ethanol from Engineered Trichoderma reesei	197
Introduction	197
Trichoderma reesei Produce Ethanol from Biomass Sugars	
The pH during Fermentation Affects Ethanol Yield	199
Sugar Used during Growth Phase Affects Xylose Fermentation	200
Sugar Used during Growin Phase Affects Aylose Fermentation	200
Direct Conversion of Cellulose to Ethanol	201
Enhancing Ethanol Synthesis by Metabolic Engineering	205
Discussion	204
Acknowledgment	
References	206
Chapter 12: Remaining Challenges in the Metabolic Engineering of Yeasts	
for Biofuels	209
• •	
Introduction—Yeasts as the Catalyst for Biomass Consumption and Biofuel	200
Production	
Metabolic Engineering—An Overview	
Enzyme and Pathway Engineering	
Gene Expression Engineering	214
Engineering the Metabolic Network—Classical Strain Engineering	
and Systems Biology	215
Computational Tools—Predictive Models for Metabolic Engineering	
Beyond Glucose	216
Beyond Bioethanol	221
Beyond Current Capability	223
Beyond Saccharomyces cerevisiae	225
Beyond Current Yield, Titers, and Production Rates	227
Conclusion	220
References	229
Part 1. Evolo from Bactoria	
Part 4: Fuels from Bacteria	239
Chapter 13: New Tools for the Genetic Modification of Industrial Clostridia	211
Introduction	
Introduction Transfer of Exogenous Genetic Material	
Transfer of Exogenous Genetic Material	
Electroporation	A 4 A
	243
Conjugation	242
Restriction-Modification Systems	242

	Contents in
Clostridial Vector Systems	245
Forward Genetics by Random Mutagenesis	250
Random Mutagenesis by Chemical and Physical Mutagens	251
Random Mutagenesis by Biological Mutagens	
Reverse Genetics	
Recombination-Independent Methods (Group II Introns)	
Recombination-Based Methods (Allelic Exchange)	
Other Advanced Genetic Tools	
Counter (Negative) Selection Markers	
Inducible Gene Expression	
Conclusion	
Acknowledgments	
References	
Chapter 14: Outlook for the Production of Butanol from Cellulolytic Stra	1ins
of Clostridia	
Introduction	
Cellulolytic <i>Clostridia</i> and the Cellulosome	
Clostridium thermocellum	
Clostridium cellulolyticum	
Other Cellulolytic Hosts	
Microbial n-Butanol- and Isobutanol-Producing Pathways	
Microbial n-Butanol Pathways	
Microbial Isobutanol Pathways	
Progress toward Butanol CBP in Cellulolytic Clostridia	
Isobutanol CBP in Clostridium cellulolyticum	
Toward Isobutanol CBP in Clostridium thermocellum	
Clostridium acetobutylicum Cellulosome Development	
Conclusions	
Acknowledgment	
References	
Chapter 15: Influence of Particle Size on Direct Microbial Conversion of	
Hot Water-Pretreated Poplar by Clostridium thermocellu	
Introduction	
Materials and Methods	
Microorganism and Fermentations	
Substrate	
Compositional Analysis	
Digestion Assay and Analysis	
X-Ray Diffraction Measurements	

X-Kay Diffraction Measurements	
Growth Studies	
Nitrogen Analysis for Carbon:Nitrogen Ratio	
Results	
Optimizing Growth Media for C. thermocellum Growth on Cellobiose,	
Avicel, and Poplar	
Particle Size Comparison (Poplar vs Avicel)	
i attere bize companion (i opia 1011/1007)	

Conclusion	317
Acknowledgments	318
Acknowledgments	318
Chapter 16: Clostridium thermocellum: Engineered for the Production	
of Bioethanol	321
Biotechnological Interest in Clostridium thermocellum	321
C. thermocellum Characteristics	321
Ecology and Isolates	322
Physiology, Metabolism, and Ethanol Tolerance	323
Genome Sequences	325
Transcriptomics and Proteomics	327
C. thermocellum Genetic Tools and Metabolic Engineering	328
Outlook	330
Acknowledgment	330
References	330
Chapter 17: Omics Approaches for Designing Biofuel Producing Cocultures	225
for Enhanced Microbial Conversion of Lignocellulosic Substrates	
Introduction	335
Synergistic Cocultures for Fermentation of Lignocellulosic Substrates	336
Predicting Synergistic Cocultures	337
Taking Advantage of "Omics" to Understand Microbial Complementarity	337
Complementarity in Glycoside Hydrolases and Hydrolysis of Complex	
Substrates	
Carbohydrate Utilization in Firmicutes	
Nutrient Complementation in Cellulolytic Cocultures	
Regulation of Microbial Interactions: Quorum Sensing	
Conclusions	
References	359
Chapter 18: Engineering Synthetic Microbial Consortia for Consolidated	
Bioprocessing of Lignocellulosic Biomass into Valuable Fuels	
and Chemicals	365
Introduction	
Engineering Single Microorganisms to Enable CBP	202
Engineered Synthetic Microbial Consortia for CBP	307
Synthetic Consortia of Saccharification and Fermentation Specialists	309
Other Synthetic Microbial Consortia for CBP	
Emerging Methods for Designing and Regulating Synthetic Microbial	
Consortia	272
Synthetic Cell–Cell Signaling	515
Synthetic Ecologies.	
Elucidation for Engineering	5/ د م ر د
Concluding Remarks	8/3 محد
References	19 : م ر د
	379

hapter 19: A Route from Biomass to Hydrocarbons via Depolymerization and Decarboxylation of Microbially Produced Polyhydroxybutyrate	383
Introduction	383
Experimental Section	
Chemicals and Catalysts	386
Stainless Steel Tube Reactor	
Gas Analysis	387
PHB Analysis	
Microbial Production of PHB	
Results and Discussion	388
Thermal Decarboxylation of Crotonic Acid	388
Thermal Depolymerization and Decarboxylation of Commercial PHB	
Microbial Production of PHB	
Thermal Depolymerization and Decarboxylation of PHB Containing	
Bacterial Cells	392
Conclusions	392
Acknowledgment	393
References	393
lex	395