CONTENTS

Preface			
I	Foundations	1	
1	Introduction	3	
2	Basic Concepts of Artificial Chemistries2.1Modeling and Simulation2.2Chemistry Concepts2.3General Structure of an Artificial Chemistry2.4A Few Important Distinctions2.5Two Examples2.6Frequently Used Techniques in ACs2.7Summary	11 11 15 25 31 33 38 43	
3	The Matrix Chemistry as an Example3.1The Basic Matrix Chemistry3.2The Simplest System, $N = 4$ 3.3The System $N = 9$ 3.4Systems with Larger N 3.5Summary	45 46 50 55 59 61	
4	Computing Chemical Reactions 4.1 From Macroscopic to Microscopic Chemical Dynamics	63 63 65 71 73 73	
5	The Chemistry of Life 5.1 What Is Life? 5.2 The Building Blocks of Life 5.3 The Organization of Modern Cells 5.4 Multicellular Organisms 5.5 Summary	77 79 80 93 100 109	

6	The Essence of Life			
	6.1	A Minimal Cell	111	
	6.2	Origin of Life	119	
	6.3	Artificial Chemistry Contributions to Origin of Life Research	130	
	6.4	Summary	. 136	
7	Evolution 1			
	7.1	Evolution: Taming Combinatorics to Improve Life	140	
	7.2	Evolutionary Dynamics from an AC Perspective	141	
	7.3	Artificial Chemistries for Evolution	154	
	7.4	Summary and Open Issues	157	
8	Comp	exity and Open-Ended Evolution	159	
	8.1	Evolution: Steering Self-Organization and Promoting Innovation	159	
	8.2	Coevolutionary Dynamics in Ecologies	161	
	8.3	Robustness and Evolvability	165	
	8.4	Complexity Growth	169	
	8.5	Toward Open-Ended Artificial Evolution	175	
	8.6	Summary	177	
Ш	Appro	oaches to Artificial Chemistries	179	
9	Rewrit	ting Systems	181	
	9.1	Lambda Calculus	182	
	9.2	Gamma	184	
	9.3	The Chemical Abstract Machine	186	
	9.4	Chemical Rewriting System on Multisets	187	
	9.5	P systems	188	
	9.6	MGS	191	
	9.7	Other Formal Calculi Inspired by a Chemical Metaphor	193	
	9.8	L-Systems and Other Rewriting Systems	193	
	9.9	Summary	194	
10	Auton	nata and Machines	195	
	10.1	Finite State Automata	196	
	10.2	Turing Machines	197	
	10.3	Von Neumann Machines	198	
	10.4	Cellular Automata	200	
	10.5	Examples of Artificial Chemistries Based on Turing Machines	202	
	10.6	Artificial Chemistries Based on von Neumann Machines	207	
	10.7	Artificial Chemistries Based on Cellular Automata	215	
	10.8	Summary	222	
11	Bio-in	spired Artificial Chemistries	225	
	11.1	String-Based Artificial Chemistries	225	
	11.2	Lock-and-Key Artificial Chemistries	234	
	11.3	Networks	240	
	11.4	Spatial Structuring and Movement in Artificial Chemistries	248	
	11.5	Summary	254	

IV	Orde	Construction	255		
12	The Structure of Organizations				
	12.1	Basic Definitions	259		
	12.2	Generators	262		
	12.3	Bringing Order into Organizations	263		
	12.4	Novelty and Innovation	265		
	12.5	Examples of the Statics of Organizations	266		
	12.6	How to Calculate Closed and Self-Maintaining Sets	270		
	12.7	Summary	273		
13	The Dynamics of Organizations 27				
	13.1	Flows, Stoichiometry and Kinetic Constants	275		
	13.2	Examples of the Dynamics of Organization	277		
	13.3	Observing Organizations	282		
	13.4	Probabilistic Notions of Closure and Self-Maintenance	283		
	13.5	Summary	285		
14	Self-O	rganization and Emergent Phenomena	287		
11	14 1	Examples of Self-Organizing Systems	288		
	14.1	Examples of Self-Organization	289		
	14.2	The Emergence of Phenomena	295		
	14.5	Explanatory Concents of Emergence	298		
	14.4	Emergence and Ton-Down Causation	304		
	14.5	Summary	306		
	14.0		500		
15	Const	ructive Dynamical Systems	307		
	15.1	Novelty, Innovation, Emergence	307		
	15.2	Birth Processes at the Same Level	309		
	15.3	The Emergence of Entities on a Higher Level	317		
	15.4	Summary	319		
V	Appli	cations	321		
16	Applio	cations of Artificial Chemistries	323		
	16.1	Robots Controlled by Artificial Chemistries	324		
	16.2	ACs for Networking	330		
	16.3	Language Dynamics and Evolution	334		
	16.4	Music Composition Using Algorithmic Chemistries	338		
	16.5	Proof Systems	339		
	16.6	Artificial Chemistry and Genetic Programming	340		
	16.7	Summary	344		
17	Comp	uting with Artificial Chemistries	345		
	17.1	Principles of implementation	346		
	17.2	Search and Optimization Algorithms Inspired by Chemistry	355		
	17.3	Distributed Algorithms Using Chemical Computing	358		
	17.4	<i>In Silico</i> Simulation of Wet Chemical Computing	366		
	17.5	Summary	372		

18	Model	ing Biological Systems	373					
	18.1	Folding Algorithms	374					
	18.2	Basic Kinetics of Biomolecular Interactions	379					
	18.3	Biochemical Pathways	383					
	18.4	Modeling Genetic Regulatory Networks	391					
	18.5	Cell Differentiation and Multicellularity	396					
	18.6	Morphogenesis	398					
	18.7	Summary	403					
19	Wet A	rtificial Chemistries	405					
	19.1	Artificial Building Blocks of Life	405					
	19.2	Synthetic Life and Protocells	411					
	19.3	Chemical and Biochemical Computation	417					
	19.4	In Vivo Computing with Bacteria and Other Living Organisms	431					
	19.5	Ethical Issues	435					
	19.6	Summary	437					
20	Bevor	nd Chemistry and Biology	439					
_0	20.1	Mechanical Self-Assembly	439					
	20.2	Nuclear and Particle Physics	442					
	20.3	Economic Systems	444					
	20.0	Social Systems	446					
	20.1	Summary	448					
	20.0		110					
VI	Conc	lusions	449					
21	Sumn	narv and Perspectives	451					
	21.1	Some Common Criticisms of the Artificial Chemistry Approach	451					
	21.2	Delimiting the Borders of the Field	453					
	21.3	Main Features of Artificial Chemistries	456					
	21.4	Conclusion	459					
Fu	rther H	Reading	461					
Ar	nendi	x Setting un Your Own Artificial Chemistry System	465					
<u> </u>	The P	vCellChemistry Package	465					
	Writin	og Your Own Artificial Chemistry in Python	468					
	Furth	er Resources	478					
Bi	hlingra	nhy	481					
Bibliography								
Author Index								
Su	Subject Index							